Identifying a steganographer in realistic and heterogeneous data sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200173" target="_blank" >RIV/68407700:21230/12:00200173 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.910565" target="_blank" >http://dx.doi.org/10.1117/12.910565</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.910565" target="_blank" >10.1117/12.910565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Identifying a steganographer in realistic and heterogeneous data sets
Popis výsledku v původním jazyce
We consider the problem of universal pooled steganalysis, in which we aim to identify a steganographer who sends many images (some of them innocent) in a network of many other innocent users. The detector must deal with multiple users and multiple imagesper user, and particularly the differences between cover sources used by different users. Despite being posed for five years, this problem has only previously been addressed by our 2011 paper. We extend our prior work in two ways. First, we present experiments in a new, highly realistic, domain: up to 4000 actors each transmitting up to 200 images, real-world data downloaded from a social networking site. Second, we replace hierarchical clustering by the method called local outlier factor (LOF), givinggreater accuracy of detection, and allowing a guilty actor sending moderate payloads to be detected, even amongst thousands of other actors sending hundreds of thousands of images.
Název v anglickém jazyce
Identifying a steganographer in realistic and heterogeneous data sets
Popis výsledku anglicky
We consider the problem of universal pooled steganalysis, in which we aim to identify a steganographer who sends many images (some of them innocent) in a network of many other innocent users. The detector must deal with multiple users and multiple imagesper user, and particularly the differences between cover sources used by different users. Despite being posed for five years, this problem has only previously been addressed by our 2011 paper. We extend our prior work in two ways. First, we present experiments in a new, highly realistic, domain: up to 4000 actors each transmitting up to 200 images, real-world data downloaded from a social networking site. Second, we replace hierarchical clustering by the method called local outlier factor (LOF), givinggreater accuracy of detection, and allowing a guilty actor sending moderate payloads to be detected, even amongst thousands of other actors sending hundreds of thousands of images.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE, Volume 8303
ISBN
9780819489500
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
13
Strana od-do
—
Název nakladatele
Society of Photo-optical Instrumentation Engineers, SPIE - International Society for Optical Engineering
Místo vydání
Pennsylvania State University. University Park,
Místo konání akce
San Francisco
Datum konání akce
22. 1. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000301416400017