Discriminative structured output learning from partially annotated examples
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200617" target="_blank" >RIV/68407700:21230/12:00200617 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Discriminative structured output learning from partially annotated examples
Popis výsledku v původním jazyce
The discriminative structured output learning has been proved successful in solving many real-life applications. A big deficiency of existing algorithms like the Structured Output SVMs is the requirement of fully annotated training examples. In this report we formulate a problem of learning the structured output classifiers from partially annotated examples as an instance of the expected risk minimization. We show that the minimization of the expected risk is equivalent to the minimization of the partial loss which can be evaluated on partially annotated examples. We proposed an instance of the partial learning algorithm for the class of linear structured output classifiers which we call Partial-SO-SVM. The Partial-SO-SVM algorithm leads to a hard non-convex optimization problem. We provide an algorithm solving the Partial-SO-SVM problem approximately using an additional prior knowledge about the problem. We demonstrated effectiveness of the proposed method on two real life computer vi
Název v anglickém jazyce
Discriminative structured output learning from partially annotated examples
Popis výsledku anglicky
The discriminative structured output learning has been proved successful in solving many real-life applications. A big deficiency of existing algorithms like the Structured Output SVMs is the requirement of fully annotated training examples. In this report we formulate a problem of learning the structured output classifiers from partially annotated examples as an instance of the expected risk minimization. We show that the minimization of the expected risk is equivalent to the minimization of the partial loss which can be evaluated on partially annotated examples. We proposed an instance of the partial learning algorithm for the class of linear structured output classifiers which we call Partial-SO-SVM. The Partial-SO-SVM algorithm leads to a hard non-convex optimization problem. We provide an algorithm solving the Partial-SO-SVM problem approximately using an additional prior knowledge about the problem. We demonstrated effectiveness of the proposed method on two real life computer vi
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů