Obstetric Medical Record Processing and Information Retrieval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00201789" target="_blank" >RIV/68407700:21230/12:00201789 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-29262-0_4#" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-29262-0_4#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-29262-0_4" target="_blank" >10.1007/978-3-642-29262-0_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Obstetric Medical Record Processing and Information Retrieval
Popis výsledku v původním jazyce
This paper describes the process of mining information from loosely structured medical textual records with no apriori knowledge. In the paper we depict the process of mining a large dataset of ~50,000-120,000 records x 20 attributes in database tables,originating from the hospital information system (thanks go to the University Hospital in Brno, Czech Republic) recording over 10 years. This paper concerns only textual attributes with free text input, that means 613,000 text fields in 16 attributes. Each attribute item contains ~800-1,500 characters (diagnoses, medications, etc.). The output of this task is a set of ordered/nominal attributes suitable for rule discovery mining and automated processing. Information mining from textual data becomes a very challenging task when the structure of the text record is very loose without any rules. The task becomes even more difficult when natural language is used and no apriori knowledge is available. The medical environment itself is also ve
Název v anglickém jazyce
Obstetric Medical Record Processing and Information Retrieval
Popis výsledku anglicky
This paper describes the process of mining information from loosely structured medical textual records with no apriori knowledge. In the paper we depict the process of mining a large dataset of ~50,000-120,000 records x 20 attributes in database tables,originating from the hospital information system (thanks go to the University Hospital in Brno, Czech Republic) recording over 10 years. This paper concerns only textual attributes with free text input, that means 613,000 text fields in 16 attributes. Each attribute item contains ~800-1,500 characters (diagnoses, medications, etc.). The output of this task is a set of ordered/nominal attributes suitable for rule discovery mining and automated processing. Information mining from textual data becomes a very challenging task when the structure of the text record is very loose without any rules. The task becomes even more difficult when natural language is used and no apriori knowledge is available. The medical environment itself is also ve
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/NT11124" target="_blank" >NT11124: Vliv hodnocení kardiotokografie pomocí metod umělé inteligence na kvalitu perinatální péče</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Electronic Healthcare
ISBN
978-3-642-29261-3
Počet stran výsledku
8
Strana od-do
26-33
Počet stran knihy
205
Název nakladatele
Springer
Místo vydání
Dordrecht
Kód UT WoS kapitoly
—