Use of partial least squares within the control relevant identification for buildings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00196180" target="_blank" >RIV/68407700:21230/13:00196180 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.conengprac.2012.09.017" target="_blank" >http://dx.doi.org/10.1016/j.conengprac.2012.09.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.conengprac.2012.09.017" target="_blank" >10.1016/j.conengprac.2012.09.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of partial least squares within the control relevant identification for buildings
Popis výsledku v původním jazyce
Climate changes, diminishing world supplies of non-renewable fuels, as well as economic aspects are probably the most significant driving factors of the current effort to save energy. As buildings account for about 40% of global final energy use, efficient building climate control can significantly contribute to the saving effort. Predictive building automation can be used to operate buildings in an energy and cost effective manner with minimum retrofitting requirements. In such a predictive control approach, dynamic building models are of crucial importance for a good control performance. An algorithm which has not been used in building modeling yet, namely a combination of minimization of multi-step ahead prediction errors and partial least squares will be investigated. Subsequently, two case studies are presented: the first is an artificial model of a building constructed in Trnsys environment, while the second is a real-life case study. The proposed identification algorithm is then
Název v anglickém jazyce
Use of partial least squares within the control relevant identification for buildings
Popis výsledku anglicky
Climate changes, diminishing world supplies of non-renewable fuels, as well as economic aspects are probably the most significant driving factors of the current effort to save energy. As buildings account for about 40% of global final energy use, efficient building climate control can significantly contribute to the saving effort. Predictive building automation can be used to operate buildings in an energy and cost effective manner with minimum retrofitting requirements. In such a predictive control approach, dynamic building models are of crucial importance for a good control performance. An algorithm which has not been used in building modeling yet, namely a combination of minimization of multi-step ahead prediction errors and partial least squares will be investigated. Subsequently, two case studies are presented: the first is an artificial model of a building constructed in Trnsys environment, while the second is a real-life case study. The proposed identification algorithm is then
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F12%2F1187" target="_blank" >GAP103/12/1187: Identifikace stochastických, nelineárních systémů pro pokročilé řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Control Engineering Practice
ISSN
0967-0661
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
113-121
Kód UT WoS článku
000311764200012
EID výsledku v databázi Scopus
—