Noise covariance estimation for Kalman filter tuning using Bayesian approach and Monte Carlo
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00199315" target="_blank" >RIV/68407700:21230/13:00199315 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/acs.2369" target="_blank" >http://dx.doi.org/10.1002/acs.2369</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/acs.2369" target="_blank" >10.1002/acs.2369</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Noise covariance estimation for Kalman filter tuning using Bayesian approach and Monte Carlo
Popis výsledku v původním jazyce
Linear time-invariant systems play significant role in the control field. A number of methods have been published for identification of the deterministic part of a process. However, identification of the stochastic part has had much less attention. Thispaper deals with estimation of covariance matrices of the noise entering a linear system. The process and measurement noise covariance matrices are tuning parameters of the Kalman filter and they affect quality of the state estimation. The noise covariance matrices are generally not known and their estimation from the measured data is a challenging task. This paper introduces a method for estimation of the noise covariance matrices using Bayesian approach along with Monte Carlo numerical methods. Performance of the approach is tested on various systems and noise properties. The second part of the paper compares Monte Carlo approach to the recently published methods. The speed of convergence is compared to the Cramér-Rao bounds.
Název v anglickém jazyce
Noise covariance estimation for Kalman filter tuning using Bayesian approach and Monte Carlo
Popis výsledku anglicky
Linear time-invariant systems play significant role in the control field. A number of methods have been published for identification of the deterministic part of a process. However, identification of the stochastic part has had much less attention. Thispaper deals with estimation of covariance matrices of the noise entering a linear system. The process and measurement noise covariance matrices are tuning parameters of the Kalman filter and they affect quality of the state estimation. The noise covariance matrices are generally not known and their estimation from the measured data is a challenging task. This paper introduces a method for estimation of the noise covariance matrices using Bayesian approach along with Monte Carlo numerical methods. Performance of the approach is tested on various systems and noise properties. The second part of the paper compares Monte Carlo approach to the recently published methods. The speed of convergence is compared to the Cramér-Rao bounds.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F11%2F1353" target="_blank" >GAP103/11/1353: Odhad stavu dynamických stochastických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Adaptive Control and Signal Processing
ISSN
0890-6327
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
957-973
Kód UT WoS článku
000326031500003
EID výsledku v databázi Scopus
—