Fast-Forward Heuristic for Multiagent Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00206027" target="_blank" >RIV/68407700:21230/13:00206027 - isvavai.cz</a>
Výsledek na webu
<a href="http://icaps13.icaps-conference.org/wp-content/uploads/2013/05/dmap13-proceedings.pdf" target="_blank" >http://icaps13.icaps-conference.org/wp-content/uploads/2013/05/dmap13-proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fast-Forward Heuristic for Multiagent Planning
Popis výsledku v původním jazyce
Use of heuristics in search-based domain-independent deterministic multiagent planning is as important as in classical planning. In this work we propose a formal and an algorithmic adaptation of a well-known heuristic Fast-Forward into multiagent planning. Such treatment is important as it solves challenges in decentralization of this and other heuristics based on relaxation of the original planning problem. Such decentralization enables global heuristic estimates to be computed without exposing local information. Additionally, since Fast-Forward heuristic is based on relaxed planning, we propose a multiagent approach for building factored relaxed planning graphs among the agents. We sketch proofs that the results of the distributed version of the algorithm gives the same results as the centralized version. Finally, we experimentally validate dierent distribution strategies of the heuristic estimate.
Název v anglickém jazyce
Fast-Forward Heuristic for Multiagent Planning
Popis výsledku anglicky
Use of heuristics in search-based domain-independent deterministic multiagent planning is as important as in classical planning. In this work we propose a formal and an algorithmic adaptation of a well-known heuristic Fast-Forward into multiagent planning. Such treatment is important as it solves challenges in decentralization of this and other heuristics based on relaxation of the original planning problem. Such decentralization enables global heuristic estimates to be computed without exposing local information. Additionally, since Fast-Forward heuristic is based on relaxed planning, we propose a multiagent approach for building factored relaxed planning graphs among the agents. We sketch proofs that the results of the distributed version of the algorithm gives the same results as the centralized version. Finally, we experimentally validate dierent distribution strategies of the heuristic estimate.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů