Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Domain Adaptation for Sequential Detection -- {PhD} Thesis Proposal

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00211718" target="_blank" >RIV/68407700:21230/13:00211718 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://cmp.felk.cvut.cz/pub/cmp/articles/fojtusim/Fojtu-TR-2013-20.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/fojtusim/Fojtu-TR-2013-20.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Domain Adaptation for Sequential Detection -- {PhD} Thesis Proposal

  • Popis výsledku v původním jazyce

    We explore the field of supervised learning methods in the scope of domain adaptation problem. By domain adaptation we understand learning in a target domain with only a few labeled training data from the target domain, given training data or a trained classifier for a different (source) domain. Domain adaptation technique can dramatically decrease the number of training samples, which is an extremely useful feature for any machine learning problem. A unifying minimization problem is formulated, encapsulating many of the related state of the art methods. We present results of our similarity transform domain adaptation method applied to the task of vehicle detection from various viewpoints. The main goal of the thesis is to propose domain adaptation methods for sequential decision/cascaded classifiers. We explore the field of supervised learning methods in the scope of domain adaptation problem. By domain adaptation we understand learning in a target domain with only a few labeled train

  • Název v anglickém jazyce

    Domain Adaptation for Sequential Detection -- {PhD} Thesis Proposal

  • Popis výsledku anglicky

    We explore the field of supervised learning methods in the scope of domain adaptation problem. By domain adaptation we understand learning in a target domain with only a few labeled training data from the target domain, given training data or a trained classifier for a different (source) domain. Domain adaptation technique can dramatically decrease the number of training samples, which is an extremely useful feature for any machine learning problem. A unifying minimization problem is formulated, encapsulating many of the related state of the art methods. We present results of our similarity transform domain adaptation method applied to the task of vehicle detection from various viewpoints. The main goal of the thesis is to propose domain adaptation methods for sequential decision/cascaded classifiers. We explore the field of supervised learning methods in the scope of domain adaptation problem. By domain adaptation we understand learning in a target domain with only a few labeled train

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TA01031478" target="_blank" >TA01031478: Automatické monitorování dopravního proudu a hlukového zatížení</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů