Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimation of Articulatory Features for Czech Language

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00220036" target="_blank" >RIV/68407700:21230/14:00220036 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimation of Articulatory Features for Czech Language

  • Popis výsledku v původním jazyce

    The issues of automatic speech recognition (ASR) aimed at the Czech language have been intensively studied in the past decades. The researches have successfully managed to develop several practical applications such as dictation programs, automatic broadcast transcription (subtitling) and others. Accuracy of these ASR systems is generally satisfactory high, however it is significantly lower if the signal is corrupted, e.g. in the case of high-level background noise, spontaneous speech or when speech ismasked and pronounced in a reduced form. These issues are still an obstacle for a wider usage of voice recognition technology under such conditions, because commonly achieved WER (Word Error Rate) of spontaneous speech recognition is above 50% in average. A possible solution to overcome this deficiency can be in the usage of speech production knowledge within ASR systems. Consequently, the speech production knowledge based on articulatory features (AFs) starts being used more often at fe

  • Název v anglickém jazyce

    Estimation of Articulatory Features for Czech Language

  • Popis výsledku anglicky

    The issues of automatic speech recognition (ASR) aimed at the Czech language have been intensively studied in the past decades. The researches have successfully managed to develop several practical applications such as dictation programs, automatic broadcast transcription (subtitling) and others. Accuracy of these ASR systems is generally satisfactory high, however it is significantly lower if the signal is corrupted, e.g. in the case of high-level background noise, spontaneous speech or when speech ismasked and pronounced in a reduced form. These issues are still an obstacle for a wider usage of voice recognition technology under such conditions, because commonly achieved WER (Word Error Rate) of spontaneous speech recognition is above 50% in average. A possible solution to overcome this deficiency can be in the usage of speech production knowledge within ASR systems. Consequently, the speech production knowledge based on articulatory features (AFs) starts being used more often at fe

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů