Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Space-Time Models in Stochastic Geometry

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00222646" target="_blank" >RIV/68407700:21230/14:00222646 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-319-10064-7_7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-10064-7_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-10064-7_7" target="_blank" >10.1007/978-3-319-10064-7_7</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Space-Time Models in Stochastic Geometry

  • Popis výsledku v původním jazyce

    Space-time models in stochastic geometry are used in many applications. Mostly these are models of space-time point processes. A second frequent situation are growth models of random sets. The present chapter aims to present more general models. It has two parts according to whether the time is considered to be discrete or continuous. In the discrete-time case we focus on state-space models and the use of Monte Carlo methods for the inference of model parameters. Two applications to real situations arepresented: a) evaluation of a neurophysiological experiment, b) models of interacting discs. In the continuous-time case we discuss space-time Lévy-driven Cox processes with different second-order structures. Besides the wellknown separable models, models with separable kernels are considered. Moreover fully nonseparable models based on ambit processes are introduced. Inference for the models based on second-order statistics is developed.

  • Název v anglickém jazyce

    Space-Time Models in Stochastic Geometry

  • Popis výsledku anglicky

    Space-time models in stochastic geometry are used in many applications. Mostly these are models of space-time point processes. A second frequent situation are growth models of random sets. The present chapter aims to present more general models. It has two parts according to whether the time is considered to be discrete or continuous. In the discrete-time case we focus on state-space models and the use of Monte Carlo methods for the inference of model parameters. Two applications to real situations arepresented: a) evaluation of a neurophysiological experiment, b) models of interacting discs. In the continuous-time case we discuss space-time Lévy-driven Cox processes with different second-order structures. Besides the wellknown separable models, models with separable kernels are considered. Moreover fully nonseparable models based on ambit processes are introduced. Inference for the models based on second-order statistics is developed.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů