Space-Time Models in Stochastic Geometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00222646" target="_blank" >RIV/68407700:21230/14:00222646 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-10064-7_7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-10064-7_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-10064-7_7" target="_blank" >10.1007/978-3-319-10064-7_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Space-Time Models in Stochastic Geometry
Popis výsledku v původním jazyce
Space-time models in stochastic geometry are used in many applications. Mostly these are models of space-time point processes. A second frequent situation are growth models of random sets. The present chapter aims to present more general models. It has two parts according to whether the time is considered to be discrete or continuous. In the discrete-time case we focus on state-space models and the use of Monte Carlo methods for the inference of model parameters. Two applications to real situations arepresented: a) evaluation of a neurophysiological experiment, b) models of interacting discs. In the continuous-time case we discuss space-time Lévy-driven Cox processes with different second-order structures. Besides the wellknown separable models, models with separable kernels are considered. Moreover fully nonseparable models based on ambit processes are introduced. Inference for the models based on second-order statistics is developed.
Název v anglickém jazyce
Space-Time Models in Stochastic Geometry
Popis výsledku anglicky
Space-time models in stochastic geometry are used in many applications. Mostly these are models of space-time point processes. A second frequent situation are growth models of random sets. The present chapter aims to present more general models. It has two parts according to whether the time is considered to be discrete or continuous. In the discrete-time case we focus on state-space models and the use of Monte Carlo methods for the inference of model parameters. Two applications to real situations arepresented: a) evaluation of a neurophysiological experiment, b) models of interacting discs. In the continuous-time case we discuss space-time Lévy-driven Cox processes with different second-order structures. Besides the wellknown separable models, models with separable kernels are considered. Moreover fully nonseparable models based on ambit processes are introduced. Inference for the models based on second-order statistics is developed.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů