Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

*Sharing local information in scanning-window detection

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00223835" target="_blank" >RIV/68407700:21230/14:00223835 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    *Sharing local information in scanning-window detection

  • Popis výsledku v původním jazyce

    *Object detection is a classic task in computer vision. WaldBoost algorithm is a state-of-the-art method for object detection due its high detection accuracy and real-time speed. However, since the traditional scanning window method classifies all the windows independently and doesn't make use of the information shared among overlapping windows,there is still a possibility of a significant speed-up by exploiting this property. We evaluate number of scanning patterns and predictors for spatially adjacentwindows, inspired by work of Hradiš et. al. Furthermore, we generalize this idea from spatially adjacent widows to multiple scales and propose {WaldBoost with Crosstalk Prediction}. Evaluating on a state-of-the-art dataset for face detection, we show that a significant speed-up can be achieved with {WaldBoost with Crosstalk Prediction} with no or a little loss of precision, outperforming the reference method of Hradiš et. al.

  • Název v anglickém jazyce

    *Sharing local information in scanning-window detection

  • Popis výsledku anglicky

    *Object detection is a classic task in computer vision. WaldBoost algorithm is a state-of-the-art method for object detection due its high detection accuracy and real-time speed. However, since the traditional scanning window method classifies all the windows independently and doesn't make use of the information shared among overlapping windows,there is still a possibility of a significant speed-up by exploiting this property. We evaluate number of scanning patterns and predictors for spatially adjacentwindows, inspired by work of Hradiš et. al. Furthermore, we generalize this idea from spatially adjacent widows to multiple scales and propose {WaldBoost with Crosstalk Prediction}. Evaluating on a state-of-the-art dataset for face detection, we show that a significant speed-up can be achieved with {WaldBoost with Crosstalk Prediction} with no or a little loss of precision, outperforming the reference method of Hradiš et. al.

Klasifikace

  • Druh

    V<sub>souhrn</sub> - Souhrnná výzkumná zpráva

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.

Údaje specifické pro druh výsledku

  • Počet stran výsledku

    11

  • Místo vydání

    Praha

  • Název nakladatele resp. objednatele

    Toyota Motor Europe NV/SA TMEM

  • Verze