*Sharing local information in scanning-window detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00223835" target="_blank" >RIV/68407700:21230/14:00223835 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
*Sharing local information in scanning-window detection
Popis výsledku v původním jazyce
*Object detection is a classic task in computer vision. WaldBoost algorithm is a state-of-the-art method for object detection due its high detection accuracy and real-time speed. However, since the traditional scanning window method classifies all the windows independently and doesn't make use of the information shared among overlapping windows,there is still a possibility of a significant speed-up by exploiting this property. We evaluate number of scanning patterns and predictors for spatially adjacentwindows, inspired by work of Hradiš et. al. Furthermore, we generalize this idea from spatially adjacent widows to multiple scales and propose {WaldBoost with Crosstalk Prediction}. Evaluating on a state-of-the-art dataset for face detection, we show that a significant speed-up can be achieved with {WaldBoost with Crosstalk Prediction} with no or a little loss of precision, outperforming the reference method of Hradiš et. al.
Název v anglickém jazyce
*Sharing local information in scanning-window detection
Popis výsledku anglicky
*Object detection is a classic task in computer vision. WaldBoost algorithm is a state-of-the-art method for object detection due its high detection accuracy and real-time speed. However, since the traditional scanning window method classifies all the windows independently and doesn't make use of the information shared among overlapping windows,there is still a possibility of a significant speed-up by exploiting this property. We evaluate number of scanning patterns and predictors for spatially adjacentwindows, inspired by work of Hradiš et. al. Furthermore, we generalize this idea from spatially adjacent widows to multiple scales and propose {WaldBoost with Crosstalk Prediction}. Evaluating on a state-of-the-art dataset for face detection, we show that a significant speed-up can be achieved with {WaldBoost with Crosstalk Prediction} with no or a little loss of precision, outperforming the reference method of Hradiš et. al.
Klasifikace
Druh
V<sub>souhrn</sub> - Souhrnná výzkumná zpráva
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
C - Předmět řešení projektu podléhá obchodnímu tajemství (§ 504 Občanského zákoníku), ale název projektu, cíle projektu a u ukončeného nebo zastaveného projektu zhodnocení výsledku řešení projektu (údaje P03, P04, P15, P19, P29, PN8) dodané do CEP, jsou upraveny tak, aby byly zveřejnitelné.
Údaje specifické pro druh výsledku
Počet stran výsledku
11
Místo vydání
Praha
Název nakladatele resp. objednatele
Toyota Motor Europe NV/SA TMEM
Verze
—