Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Goal Trajectory Planning with Motion Primitives for Hexapod Walking Robot

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00224921" target="_blank" >RIV/68407700:21230/14:00224921 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Goal Trajectory Planning with Motion Primitives for Hexapod Walking Robot

  • Popis výsledku v původním jazyce

    This paper presents our early results on multi-goal trajectory planning with motion primitives for a hexapod walking robot. We propose to use an on-line unsupervised learning method to simultaneously find a solution of the underlying traveling salesman problem together with particular trajectories between the goals. Using this technique, we avoid pre-computation of all possible trajectories between the goals for a graph based heuristic solvers for the traveling salesman problem. The proposed approach utilizes principles of self-organizing map to steer the randomized sampling of configuration space in promising areas regarding the multi-goal trajectory. The presented results indicate the proposed steering mechanism provides a feasible multi-goal trajectory in a less number of samples than an approach based on a priori known sequence of the goals visits.

  • Název v anglickém jazyce

    Multi-Goal Trajectory Planning with Motion Primitives for Hexapod Walking Robot

  • Popis výsledku anglicky

    This paper presents our early results on multi-goal trajectory planning with motion primitives for a hexapod walking robot. We propose to use an on-line unsupervised learning method to simultaneously find a solution of the underlying traveling salesman problem together with particular trajectories between the goals. Using this technique, we avoid pre-computation of all possible trajectories between the goals for a graph based heuristic solvers for the traveling salesman problem. The proposed approach utilizes principles of self-organizing map to steer the randomized sampling of configuration space in promising areas regarding the multi-goal trajectory. The presented results indicate the proposed steering mechanism provides a feasible multi-goal trajectory in a less number of samples than an approach based on a priori known sequence of the goals visits.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GP13-18316P" target="_blank" >GP13-18316P: Samo-organizující se sítě v robotických úlohách plánování cesty přes více cílů</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics

  • ISBN

    978-989-758-040-6

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    599-604

  • Název nakladatele

    SciTePress - Science and Technology Publications

  • Místo vydání

    Porto

  • Místo konání akce

    Vienna

  • Datum konání akce

    1. 9. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku