Indexing Images for Visual Memory by Using {DNN} Descriptors -- Preliminary Experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00224957" target="_blank" >RIV/68407700:21230/14:00224957 - isvavai.cz</a>
Výsledek na webu
<a href="http://cmp.felk.cvut.cz/pub/cmp/articles/svoboda/Derner-TR-2014-25.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/svoboda/Derner-TR-2014-25.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Indexing Images for Visual Memory by Using {DNN} Descriptors -- Preliminary Experiments
Popis výsledku v původním jazyce
Visual memory in mobile robotics is important to make the local- ization of a robot robust to situations, when GPS or similar localization methods are not available. Unlike many conventional approaches us- ing local features, we use a holistic method that employs deep neural networks (DNNs) to calculate a global descriptor of the whole image. We consider a scenario in which a robot equipped with an omni-directional camera calculates and stores DNN descriptors of images together with the positions as itmoves in the environment. When the position is unknown to the robot, the algorithm estimates it for a given omnidirectional image by matching it with the most similar database image. We compared our approach with a recently tested GIST-based approach onthe same dataset and we found out that the DNN-based approach yields better results. The experiments also show that the DNN-based algorithm is quite robust to partial occlusion, rotation and changes in lighting conditions.
Název v anglickém jazyce
Indexing Images for Visual Memory by Using {DNN} Descriptors -- Preliminary Experiments
Popis výsledku anglicky
Visual memory in mobile robotics is important to make the local- ization of a robot robust to situations, when GPS or similar localization methods are not available. Unlike many conventional approaches us- ing local features, we use a holistic method that employs deep neural networks (DNNs) to calculate a global descriptor of the whole image. We consider a scenario in which a robot equipped with an omni-directional camera calculates and stores DNN descriptors of images together with the positions as itmoves in the environment. When the position is unknown to the robot, the algorithm estimates it for a given omnidirectional image by matching it with the most similar database image. We compared our approach with a recently tested GIST-based approach onthe same dataset and we found out that the DNN-based approach yields better results. The experiments also show that the DNN-based algorithm is quite robust to partial occlusion, rotation and changes in lighting conditions.
Klasifikace
Druh
V<sub>souhrn</sub> - Souhrnná výzkumná zpráva
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Počet stran výsledku
16
Místo vydání
Praha
Název nakladatele resp. objednatele
Center for Machine Perception, K13133 FEE, Czech Technical University
Verze
—