Detecting Botnet Traffic from a Single Host
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00226434" target="_blank" >RIV/68407700:21230/14:00226434 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.igi-global.com/chapter/detecting-botnet-traffic-from-a-single-host/123544" target="_blank" >http://www.igi-global.com/chapter/detecting-botnet-traffic-from-a-single-host/123544</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-4666-7381-6.ch019" target="_blank" >10.4018/978-1-4666-7381-6.ch019</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting Botnet Traffic from a Single Host
Popis výsledku v původním jazyce
The detection of bots and botnets in the network may be improved if the analysis is done on the traffic of one bot alone. While a botnet may be detected by correlating the behavior of several bots in a large amount of traffic, one bot alone can be detected by analyzing its unique trends in less traffic. The algorithms to differentiate the traffic of one bot from the normal traffic of one computer may take advantage of these differences. The authors propose to detect bots in the network by analyzing therelationships between flow features in a time window. The technique is based on the Expectation-Maximization clustering algorithm. To verify the method they designed test-beds and obtained a dataset of six different captures. The results are encouraging,showing a true positive error rate of 99.08% with a false positive error rate of 0.7%.
Název v anglickém jazyce
Detecting Botnet Traffic from a Single Host
Popis výsledku anglicky
The detection of bots and botnets in the network may be improved if the analysis is done on the traffic of one bot alone. While a botnet may be detected by correlating the behavior of several bots in a large amount of traffic, one bot alone can be detected by analyzing its unique trends in less traffic. The algorithms to differentiate the traffic of one bot from the normal traffic of one computer may take advantage of these differences. The authors propose to detect bots in the network by analyzing therelationships between flow features in a time window. The technique is based on the Expectation-Maximization clustering algorithm. To verify the method they designed test-beds and obtained a dataset of six different captures. The results are encouraging,showing a true positive error rate of 99.08% with a false positive error rate of 0.7%.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů