Real-Time Action Model Learning with Online Algorithm 3 SG
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00227813" target="_blank" >RIV/68407700:21230/14:00227813 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/08839514.2014.927692" target="_blank" >http://dx.doi.org/10.1080/08839514.2014.927692</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/08839514.2014.927692" target="_blank" >10.1080/08839514.2014.927692</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Real-Time Action Model Learning with Online Algorithm 3 SG
Popis výsledku v původním jazyce
An action model, as a logic-based representation of action?s effects and preconditions, constitutes an essential requirement for planning and intelligent behavior. Writing these models by hand, especially in complex domains, is often a time-consuming anderror-prone task. An alternative approach is to let the agents learn action models from their own observations. We introduce a novel action learning algorithm called 3SG (Simultaneous Specification, Simplification, and Generalization), analyze and provesome of its properties, and present the first experimental results (using real-world robots of the SyRoTek platform and simulated agents in action computer game Unreal Tournament 2004). Unlike the majority of available alternatives, 3SG produces probabilistic action models with conditional effects and deals with action failures, sensoric noise, and incomplete observations. The main difference, however, is that 3SG is an online algorithm, which means it is rather fast (polynomial in the
Název v anglickém jazyce
Real-Time Action Model Learning with Online Algorithm 3 SG
Popis výsledku anglicky
An action model, as a logic-based representation of action?s effects and preconditions, constitutes an essential requirement for planning and intelligent behavior. Writing these models by hand, especially in complex domains, is often a time-consuming anderror-prone task. An alternative approach is to let the agents learn action models from their own observations. We introduce a novel action learning algorithm called 3SG (Simultaneous Specification, Simplification, and Generalization), analyze and provesome of its properties, and present the first experimental results (using real-world robots of the SyRoTek platform and simulated agents in action computer game Unreal Tournament 2004). Unlike the majority of available alternatives, 3SG produces probabilistic action models with conditional effects and deals with action failures, sensoric noise, and incomplete observations. The main difference, however, is that 3SG is an online algorithm, which means it is rather fast (polynomial in the
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Artificial Intelligence
ISSN
0883-9514
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
22
Strana od-do
690-711
Kód UT WoS článku
000340389400003
EID výsledku v databázi Scopus
—