Analysis of the Relationship Between Process and Vibex Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00227964" target="_blank" >RIV/68407700:21230/14:00227964 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of the Relationship Between Process and Vibex Data
Popis výsledku v původním jazyce
We explored how vibrations (recorded in the VIBEX dataset) are related to values of standard process variables, and particularly whether some of the vibration variables can be predicted from the process variables. We _rst looked at the global relationships between the two categories, by analysing the dependencies between the principal components of the two data families. This analysis shows a visual pattern indicating there is a non-random association between the two. Then we tried to learn a predictivemodel for each individual VIBEX variable, in which the inputs are formed by the process variables. Some of the vibration variables proved predictable as demonstrated by the values of the correlation coe_cient which measures the statistical agreement between the prediction and the actual value. The correlation coe_cient values estimated on independent test sets were often over 0.5 (a correlation ce_cient ranges from -1 to 1, where any positive number indicates a correlation).
Název v anglickém jazyce
Analysis of the Relationship Between Process and Vibex Data
Popis výsledku anglicky
We explored how vibrations (recorded in the VIBEX dataset) are related to values of standard process variables, and particularly whether some of the vibration variables can be predicted from the process variables. We _rst looked at the global relationships between the two categories, by analysing the dependencies between the principal components of the two data families. This analysis shows a visual pattern indicating there is a non-random association between the two. Then we tried to learn a predictivemodel for each individual VIBEX variable, in which the inputs are formed by the process variables. Some of the vibration variables proved predictable as demonstrated by the values of the correlation coe_cient which measures the statistical agreement between the prediction and the actual value. The correlation coe_cient values estimated on independent test sets were often over 0.5 (a correlation ce_cient ranges from -1 to 1, where any positive number indicates a correlation).
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E13027" target="_blank" >7E13027: SUstainable PREdictive Maintenance for manufacturing Equipment</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů