Model Selection and Overfitting in Genetic Programming: Empirical Study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00231779" target="_blank" >RIV/68407700:21230/15:00231779 - isvavai.cz</a>
Výsledek na webu
<a href="http://dl.acm.org/citation.cfm?id=2764678&CFID=715756301&CFTOKEN=65340477" target="_blank" >http://dl.acm.org/citation.cfm?id=2764678&CFID=715756301&CFTOKEN=65340477</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/2739482.2764678" target="_blank" >10.1145/2739482.2764678</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model Selection and Overfitting in Genetic Programming: Empirical Study
Popis výsledku v původním jazyce
Genetic Programming has been very successful in solving a large area of problems but its use as a machine learning algorithm has been limited so far. One of the reasons is the problem of overfitting which cannot be solved or suppresed as easily as in more traditional approaches. Another problem, closely related to overfitting, is the selection of the final model from the population. In this article we present our research that addresses both problems: overfitting and model selection. We compare severalways of dealing with ovefitting, based on Random Sampling Technique (RST) and on using a validation set, all with an emphasis on model selection. We subject each approach to a thorough testing on artificial and real?world datasets and compare them with the standard approach, which uses the full training data, as a baseline.
Název v anglickém jazyce
Model Selection and Overfitting in Genetic Programming: Empirical Study
Popis výsledku anglicky
Genetic Programming has been very successful in solving a large area of problems but its use as a machine learning algorithm has been limited so far. One of the reasons is the problem of overfitting which cannot be solved or suppresed as easily as in more traditional approaches. Another problem, closely related to overfitting, is the selection of the final model from the population. In this article we present our research that addresses both problems: overfitting and model selection. We compare severalways of dealing with ovefitting, based on Random Sampling Technique (RST) and on using a validation set, all with an emphasis on model selection. We subject each approach to a thorough testing on artificial and real?world datasets and compare them with the standard approach, which uses the full training data, as a baseline.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Companion Publication of the 2015 on Genetic and Evolutionary Computation Conference (GECCO 2015)
ISBN
978-1-4503-3488-4
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
1527-1528
Název nakladatele
ACM
Místo vydání
New York
Místo konání akce
Madrid
Datum konání akce
11. 7. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—