Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-Objective Optimization of a Low-Noise Antenna Amplifier for Multi-Constellation Satellite-Navigation Receivers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00233668" target="_blank" >RIV/68407700:21230/15:00233668 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/SOCC.2015.7406919" target="_blank" >http://dx.doi.org/10.1109/SOCC.2015.7406919</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/SOCC.2015.7406919" target="_blank" >10.1109/SOCC.2015.7406919</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-Objective Optimization of a Low-Noise Antenna Amplifier for Multi-Constellation Satellite-Navigation Receivers

  • Popis výsledku v původním jazyce

    Although the major parts of function blocks for the satellite navigation receivers are fully integrated in a CMOS chip in most cases, it is convenient to create an antenna preamplifier as a separate circuit based on a low-noise pHEMT. Such an RF front end can be strongly optimized to attain a trade-off between the noise figure and transducer power gain. Furthermore, as all the principal navigation systems (GPS, GLONASS, Galileo, and Compass) work in similar frequency band (roughly from 1.1 to 1.7 GHz), it is reasonable to create this low-noise preamplifier for all of them. In the paper, a sophisticated method of the amplifier design is suggested based on multi-objective optimization. First, an extraction of pHEMT model parameters was performed, including comparisons among several models. The extraction was carried out by our original three-step robust identification procedure based on a combination of meta-heuristic and direct optimization methods. Second, a substantial improvement of a standard method for the multi-objective optimization is outlined. Third, the equations of passive elements of the circuit (including transmission lines and T splitters) were carefully defined using frequency dispersion of their parameters as Q, ESR, etc. Fourth, an optimal selection of the amplifier operating point and essential passive elements was performed using the previously improved goal attainment method. Finally, the s-parameters and noise figure of the proposed preamplifier were measured, and the third-order intermodulation products were also checked.

  • Název v anglickém jazyce

    Multi-Objective Optimization of a Low-Noise Antenna Amplifier for Multi-Constellation Satellite-Navigation Receivers

  • Popis výsledku anglicky

    Although the major parts of function blocks for the satellite navigation receivers are fully integrated in a CMOS chip in most cases, it is convenient to create an antenna preamplifier as a separate circuit based on a low-noise pHEMT. Such an RF front end can be strongly optimized to attain a trade-off between the noise figure and transducer power gain. Furthermore, as all the principal navigation systems (GPS, GLONASS, Galileo, and Compass) work in similar frequency band (roughly from 1.1 to 1.7 GHz), it is reasonable to create this low-noise preamplifier for all of them. In the paper, a sophisticated method of the amplifier design is suggested based on multi-objective optimization. First, an extraction of pHEMT model parameters was performed, including comparisons among several models. The extraction was carried out by our original three-step robust identification procedure based on a combination of meta-heuristic and direct optimization methods. Second, a substantial improvement of a standard method for the multi-objective optimization is outlined. Third, the equations of passive elements of the circuit (including transmission lines and T splitters) were carefully defined using frequency dispersion of their parameters as Q, ESR, etc. Fourth, an optimal selection of the amplifier operating point and essential passive elements was performed using the previously improved goal attainment method. Finally, the s-parameters and noise figure of the proposed preamplifier were measured, and the third-order intermodulation products were also checked.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TE01020186" target="_blank" >TE01020186: Centrum integrovaných družicových a pozemských navigačních technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the 28th IEEE International System on Chip Conference (SOCC)

  • ISBN

    978-1-4673-9093-4

  • ISSN

    2164-1706

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    88-93

  • Název nakladatele

    IEEE Circuits and Systems Society

  • Místo vydání

    Monterey

  • Místo konání akce

    Beijing

  • Datum konání akce

    8. 9. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku