Increasing Weak Classifier Diversity by Omics Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00234034" target="_blank" >RIV/68407700:21230/15:00234034 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Increasing Weak Classifier Diversity by Omics Networks
Popis výsledku v původním jazyce
The common problems in machine learning from omics data are the scarcity of samples, the high number of features and their complex interaction structure. The models built solely from measured data often suffer from overfitting. One of possible methods dealing with overfitting is to use prior knowledge for regularization. This work analyzes contribution of feature interaction networks in regularization of ensemble classifiers representing another approach to overfitting reduction. We study how utilization of feature interaction networks influences diversity of weak classifiers and thus accuracy of the resulting ensemble model. The network and its random walks are used to control the feature randomization during construction of weak classifiers, which makes them more diverse than in the well-known random forest. We experiment with different types of weak classifiers (trees, logistic regression, naive Bayes) and different random walk lengths and demonstrate that diversity of weak classifiers grows with increasing network locality of weak classifiers.
Název v anglickém jazyce
Increasing Weak Classifier Diversity by Omics Networks
Popis výsledku anglicky
The common problems in machine learning from omics data are the scarcity of samples, the high number of features and their complex interaction structure. The models built solely from measured data often suffer from overfitting. One of possible methods dealing with overfitting is to use prior knowledge for regularization. This work analyzes contribution of feature interaction networks in regularization of ensemble classifiers representing another approach to overfitting reduction. We study how utilization of feature interaction networks influences diversity of weak classifiers and thus accuracy of the resulting ensemble model. The network and its random walks are used to control the feature randomization during construction of weak classifiers, which makes them more diverse than in the well-known random forest. We experiment with different types of weak classifiers (trees, logistic regression, naive Bayes) and different random walk lengths and demonstrate that diversity of weak classifiers grows with increasing network locality of weak classifiers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2nd Workshop on Machine Learning in Life Sciences
ISBN
978-83-943803-0-4
ISSN
—
e-ISSN
—
Počet stran výsledku
13
Strana od-do
16-28
Název nakladatele
ENGINE - European Research Centre of Network Inteligence and Innovation, Wroclaw University of Technology
Místo vydání
Wroclaw
Místo konání akce
Porto
Datum konání akce
7. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—