Is Ensemble Classifier Needed for Steganalysis in High-Dimensional Feature Spaces?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00237781" target="_blank" >RIV/68407700:21230/15:00237781 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/WIFS.2015.7368597" target="_blank" >http://dx.doi.org/10.1109/WIFS.2015.7368597</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WIFS.2015.7368597" target="_blank" >10.1109/WIFS.2015.7368597</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Is Ensemble Classifier Needed for Steganalysis in High-Dimensional Feature Spaces?
Popis výsledku v původním jazyce
The ensemble classifier, based on Fisher Linear Discriminant base learners, was introduced specifically for steganalysis of digital media, which currently uses high-dimensional feature spaces. Presently it is probably the most used method to design supervised classifier for steganalysis of digital images because of its good detection accuracy and small computational cost. It has been assumed by the community that the classifier implements a non-linear boundary through pooling binary decision of individual classifiers within the ensemble. This paper challenges this assumption by showing that linear classifier obtained by various regularizations of the FLD can perform equally well as the ensemble. Moreover it demonstrates that using state of the art solvers linear classifiers can be trained more efficiently and offer certain potential advantages over the original ensemble leading to much lower computational complexity than the ensemble classifier. All claims are supported experimentally
Název v anglickém jazyce
Is Ensemble Classifier Needed for Steganalysis in High-Dimensional Feature Spaces?
Popis výsledku anglicky
The ensemble classifier, based on Fisher Linear Discriminant base learners, was introduced specifically for steganalysis of digital media, which currently uses high-dimensional feature spaces. Presently it is probably the most used method to design supervised classifier for steganalysis of digital images because of its good detection accuracy and small computational cost. It has been assumed by the community that the classifier implements a non-linear boundary through pooling binary decision of individual classifiers within the ensemble. This paper challenges this assumption by showing that linear classifier obtained by various regularizations of the FLD can perform equally well as the ensemble. Moreover it demonstrates that using state of the art solvers linear classifiers can be trained more efficiently and offer certain potential advantages over the original ensemble leading to much lower computational complexity than the ensemble classifier. All claims are supported experimentally
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 7th International Workshop on Forensics and Security
ISBN
978-1-4673-6802-5
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE Signal Processing Society
Místo vydání
New Jersey
Místo konání akce
Rome
Datum konání akce
16. 11. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—