Learning Running-time Prediction Models for Gene-Expression Analysis Workflows
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00239330" target="_blank" >RIV/68407700:21230/15:00239330 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Running-time Prediction Models for Gene-Expression Analysis Workflows
Popis výsledku v původním jazyce
One of the central issues for the efficient management of Scientific workflow applications is the prediction of tasks performance. This paper proposes a novel approach for constructing performance models for tasks in data-intensive scientific workflows in an autonomous way. Ensemble Machine Learning techniques are used to produce robust combined models with high predictive accuracy. Information derived from workflow systems and the characteristics and provenance of the data are exploited to guarantee the accuracy of the models. A gene-expression analysis workflow application was used as case study over homogeneous and heterogeneous computing environments. Experimental results evidence noticeable improvements while using ensemble models in comparison with single/standalone prediction models. Ensemble learning techniques made it possible to reduce the prediction error with respect to the strategies of a single-model with values ranging from 14.47% to 28.36% for the homogeneous case, and
Název v anglickém jazyce
Learning Running-time Prediction Models for Gene-Expression Analysis Workflows
Popis výsledku anglicky
One of the central issues for the efficient management of Scientific workflow applications is the prediction of tasks performance. This paper proposes a novel approach for constructing performance models for tasks in data-intensive scientific workflows in an autonomous way. Ensemble Machine Learning techniques are used to produce robust combined models with high predictive accuracy. Information derived from workflow systems and the characteristics and provenance of the data are exploited to guarantee the accuracy of the models. A gene-expression analysis workflow application was used as case study over homogeneous and heterogeneous computing environments. Experimental results evidence noticeable improvements while using ensemble models in comparison with single/standalone prediction models. Ensemble learning techniques made it possible to reduce the prediction error with respect to the strategies of a single-model with values ranging from 14.47% to 28.36% for the homogeneous case, and
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E13027" target="_blank" >7E13027: SUstainable PREdictive Maintenance for manufacturing Equipment</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE LATIN AMERICA TRANSACTIONS
ISSN
1548-0992
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
3088-3095
Kód UT WoS článku
000366502700040
EID výsledku v databázi Scopus
—