Radial Distortion Homography
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00321165" target="_blank" >RIV/68407700:21230/15:00321165 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21230/15:00235489 RIV/68407700:21730/15:00321165
Výsledek na webu
<a href="https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Kukelova_Radial_Distortion_Homography_2015_CVPR_paper.pdf" target="_blank" >https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Kukelova_Radial_Distortion_Homography_2015_CVPR_paper.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2015.7298663" target="_blank" >10.1109/CVPR.2015.7298663</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radial Distortion Homography
Popis výsledku v původním jazyce
The importance of precise homography estimation is often underestimated even though it plays a crucial role in various vision applications such as plane or planarity detection, scene degeneracy tests, camera motion classification, image stitching, and many more. Ignoring the radial distortion component in homography estimation-even for classical perspective cameras-may lead to significant errors or totally wrong estimates. In this paper, we fill the gap among the homography estimation methods by presenting two algorithms for estimating homography between two cameras with different radial distortions. Both algorithms can handle planar scenes as well as scenes where the relative motion between the cameras is a pure rotation. The first algorithm uses the minimal number of five image point correspondences and solves a nonlinear system of polynomial equations using Grobner basis method. The second algorithm uses a non-minimal number of six image point correspondences and leads to a simple system of two quadratic equations in two unknowns and one system of six linear equations. The proposed algorithms are fast, stable, and can be efficiently used inside a RANSAC loop.
Název v anglickém jazyce
Radial Distortion Homography
Popis výsledku anglicky
The importance of precise homography estimation is often underestimated even though it plays a crucial role in various vision applications such as plane or planarity detection, scene degeneracy tests, camera motion classification, image stitching, and many more. Ignoring the radial distortion component in homography estimation-even for classical perspective cameras-may lead to significant errors or totally wrong estimates. In this paper, we fill the gap among the homography estimation methods by presenting two algorithms for estimating homography between two cameras with different radial distortions. Both algorithms can handle planar scenes as well as scenes where the relative motion between the cameras is a pure rotation. The first algorithm uses the minimal number of five image point correspondences and solves a nonlinear system of polynomial equations using Grobner basis method. The second algorithm uses a non-minimal number of six image point correspondences and leads to a simple system of two quadratic equations in two unknowns and one system of six linear equations. The proposed algorithms are fast, stable, and can be efficiently used inside a RANSAC loop.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CVPR 2015: Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISBN
978-1-4673-6964-0
ISSN
1063-6919
e-ISSN
—
Počet stran výsledku
9
Strana od-do
639-647
Název nakladatele
IEEE Computer Society Press
Místo vydání
New York
Místo konání akce
Boston
Datum konání akce
7. 6. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000387959200070