New tool for visualization of time series and anomalies in streaming data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00236681" target="_blank" >RIV/68407700:21230/16:00236681 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/291774971_NEW_TOOL_FOR_VISUALIZATION_OF_TIME-SERIES_AND_ANOMALIES_IN_STREAMING_DATA_-_short_version" target="_blank" >https://www.researchgate.net/publication/291774971_NEW_TOOL_FOR_VISUALIZATION_OF_TIME-SERIES_AND_ANOMALIES_IN_STREAMING_DATA_-_short_version</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201664041353" target="_blank" >10.11118/actaun201664041353</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New tool for visualization of time series and anomalies in streaming data
Popis výsledku v původním jazyce
Presented is a new visualization module which is available as an open source solution and features some novel combination of capabilities. The focus is on its lightweight, interactive & intuitive use and ease of deployment – including a setup for a live monitoring system with anomaly detection and highlighting abilities. This study describes the design and development process of our new tool for visualization of time-series data with focus on anomaly detection and streaming data. We frame the examples and motivation from our research activities, which include design and evaluation of neural network models, systems for continuous monitoring and anomaly detection (for example in IT or medical domains), and from usage in signal analysis applications. The most important aspects of the proposed visualization tool are ease of availability, interactive graph support, live monitoring and a possibility to highlight anomalies. The software is published at https://github.com/nupic-community/nupic.visualizations (OTAHAL, M., FOHL, J., 2015); there is also available an extended version of the article with more details and figures (OTAHAL, M., STEPANKOVA, O., 2015).
Název v anglickém jazyce
New tool for visualization of time series and anomalies in streaming data
Popis výsledku anglicky
Presented is a new visualization module which is available as an open source solution and features some novel combination of capabilities. The focus is on its lightweight, interactive & intuitive use and ease of deployment – including a setup for a live monitoring system with anomaly detection and highlighting abilities. This study describes the design and development process of our new tool for visualization of time-series data with focus on anomaly detection and streaming data. We frame the examples and motivation from our research activities, which include design and evaluation of neural network models, systems for continuous monitoring and anomaly detection (for example in IT or medical domains), and from usage in signal analysis applications. The most important aspects of the proposed visualization tool are ease of availability, interactive graph support, live monitoring and a possibility to highlight anomalies. The software is published at https://github.com/nupic-community/nupic.visualizations (OTAHAL, M., FOHL, J., 2015); there is also available an extended version of the article with more details and figures (OTAHAL, M., STEPANKOVA, O., 2015).
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
2016
Číslo periodika v rámci svazku
64
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
12
Strana od-do
1353-1364
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84990891747