Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Texel-based image classification with orthogonal bases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304079" target="_blank" >RIV/68407700:21230/16:00304079 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Carbajal-SPIE2016.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Carbajal-SPIE2016.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1117/12.2228694" target="_blank" >10.1117/12.2228694</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Texel-based image classification with orthogonal bases

  • Popis výsledku v původním jazyce

    Periodic variations in patterns within a group of pixels provide important information about the surface of interest and can be used to identify objects or regions. Hence, a proper analysis can be applied to extract particular features according to some specific image properties. Recently, texture analysis using orthogonal polynomials has gained attention since polynomials characterize the pseudo-periodic behavior of textures through the projection of the pattern of interest over a group of kernel functions. However, the maximum polynomial order is often linked to the size of the texture, which implies in many cases, a complex calculation and introduces instability in higher orders leading to computational errors. In this paper, we address this issue and explore a pre-processing stage to compute the optimal size of the window of analysis called "texel." We propose Haralick-based metrics to find the main oscillation period, such that, it represents the fundamental texture and captures the minimum information, which is sufficient for classification tasks. This procedure avoids the computation of large polynomials and reduces substantially the feature space with small classification errors. Our proposal is also compared against different fixed-size windows. We also show similarities between full-image representations and the ones based on texels in terms of visual structures and feature vectors using two different orthogonal bases: Tchebichef and Hermite polynomials. Finally, we assess the performance of the proposal using well-known texture databases found in the literature.

  • Název v anglickém jazyce

    Texel-based image classification with orthogonal bases

  • Popis výsledku anglicky

    Periodic variations in patterns within a group of pixels provide important information about the surface of interest and can be used to identify objects or regions. Hence, a proper analysis can be applied to extract particular features according to some specific image properties. Recently, texture analysis using orthogonal polynomials has gained attention since polynomials characterize the pseudo-periodic behavior of textures through the projection of the pattern of interest over a group of kernel functions. However, the maximum polynomial order is often linked to the size of the texture, which implies in many cases, a complex calculation and introduces instability in higher orders leading to computational errors. In this paper, we address this issue and explore a pre-processing stage to compute the optimal size of the window of analysis called "texel." We propose Haralick-based metrics to find the main oscillation period, such that, it represents the fundamental texture and captures the minimum information, which is sufficient for classification tasks. This procedure avoids the computation of large polynomials and reduces substantially the feature space with small classification errors. Our proposal is also compared against different fixed-size windows. We also show similarities between full-image representations and the ones based on texels in terms of visual structures and feature vectors using two different orthogonal bases: Tchebichef and Hermite polynomials. Finally, we assess the performance of the proposal using well-known texture databases found in the literature.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-21421S" target="_blank" >GA14-21421S: Automatická analýza prostorových vzorů genové exprese</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of SPIE - The International Society for Optical Engineering

  • ISBN

    9781510601413

  • ISSN

    1996756X

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

  • Název nakladatele

    SPIE

  • Místo vydání

    Bellingham (stát Washington)

  • Místo konání akce

    Brusel

  • Datum konání akce

    3. 4. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000385792600046