Texel-based image classification with orthogonal bases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304079" target="_blank" >RIV/68407700:21230/16:00304079 - isvavai.cz</a>
Výsledek na webu
<a href="http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Carbajal-SPIE2016.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/kybic/Carbajal-SPIE2016.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2228694" target="_blank" >10.1117/12.2228694</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Texel-based image classification with orthogonal bases
Popis výsledku v původním jazyce
Periodic variations in patterns within a group of pixels provide important information about the surface of interest and can be used to identify objects or regions. Hence, a proper analysis can be applied to extract particular features according to some specific image properties. Recently, texture analysis using orthogonal polynomials has gained attention since polynomials characterize the pseudo-periodic behavior of textures through the projection of the pattern of interest over a group of kernel functions. However, the maximum polynomial order is often linked to the size of the texture, which implies in many cases, a complex calculation and introduces instability in higher orders leading to computational errors. In this paper, we address this issue and explore a pre-processing stage to compute the optimal size of the window of analysis called "texel." We propose Haralick-based metrics to find the main oscillation period, such that, it represents the fundamental texture and captures the minimum information, which is sufficient for classification tasks. This procedure avoids the computation of large polynomials and reduces substantially the feature space with small classification errors. Our proposal is also compared against different fixed-size windows. We also show similarities between full-image representations and the ones based on texels in terms of visual structures and feature vectors using two different orthogonal bases: Tchebichef and Hermite polynomials. Finally, we assess the performance of the proposal using well-known texture databases found in the literature.
Název v anglickém jazyce
Texel-based image classification with orthogonal bases
Popis výsledku anglicky
Periodic variations in patterns within a group of pixels provide important information about the surface of interest and can be used to identify objects or regions. Hence, a proper analysis can be applied to extract particular features according to some specific image properties. Recently, texture analysis using orthogonal polynomials has gained attention since polynomials characterize the pseudo-periodic behavior of textures through the projection of the pattern of interest over a group of kernel functions. However, the maximum polynomial order is often linked to the size of the texture, which implies in many cases, a complex calculation and introduces instability in higher orders leading to computational errors. In this paper, we address this issue and explore a pre-processing stage to compute the optimal size of the window of analysis called "texel." We propose Haralick-based metrics to find the main oscillation period, such that, it represents the fundamental texture and captures the minimum information, which is sufficient for classification tasks. This procedure avoids the computation of large polynomials and reduces substantially the feature space with small classification errors. Our proposal is also compared against different fixed-size windows. We also show similarities between full-image representations and the ones based on texels in terms of visual structures and feature vectors using two different orthogonal bases: Tchebichef and Hermite polynomials. Finally, we assess the performance of the proposal using well-known texture databases found in the literature.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-21421S" target="_blank" >GA14-21421S: Automatická analýza prostorových vzorů genové exprese</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE - The International Society for Optical Engineering
ISBN
9781510601413
ISSN
1996756X
e-ISSN
—
Počet stran výsledku
11
Strana od-do
—
Název nakladatele
SPIE
Místo vydání
Bellingham (stát Washington)
Místo konání akce
Brusel
Datum konání akce
3. 4. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000385792600046