Learning and Calibrating Per-Location Classifiers for Visual Place Recognition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304267" target="_blank" >RIV/68407700:21230/16:00304267 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007/s11263-015-0878-x" target="_blank" >http://link.springer.com/article/10.1007/s11263-015-0878-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11263-015-0878-x" target="_blank" >10.1007/s11263-015-0878-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning and Calibrating Per-Location Classifiers for Visual Place Recognition
Popis výsledku v původním jazyce
The aim of this work is to localize a query photograph by finding other images depicting the same place in a large geotagged image database. This is a challenging task due to changes in viewpoint, imaging conditions and the large size of the image database. The contribution of this work is two-fold. First, we cast the place recognition problem as a classification task and use the available geotags to train a classifier for each location in the database in a similar manner to per-exemplar SVMs in object recognition. Second, as only one or a few positive training examples are available for each location, we propose two methods to calibrate all the per-location SVM classifiers without the need for additional positive training data. The first method relies on p-values from statistical hypothesis testing and uses only the available negative training data. The second method performs an affine calibration by appropriately normalizing the learnt classifier hyperplane and does not need any additional labelled training data. We test the proposed place recognitionmethod with the bag-of-visual-words and Fisher vector image representations suitable for large scale indexing. Experiments are performed on three datasets: 25,000 and 55,000 geotagged street view images of Pittsburgh, and the 24/7 Tokyo benchmark containing 76,000 images with varying illumination conditions. The results show improved place recognition accuracy of the learnt image representation over direct matching of raw image descriptors.
Název v anglickém jazyce
Learning and Calibrating Per-Location Classifiers for Visual Place Recognition
Popis výsledku anglicky
The aim of this work is to localize a query photograph by finding other images depicting the same place in a large geotagged image database. This is a challenging task due to changes in viewpoint, imaging conditions and the large size of the image database. The contribution of this work is two-fold. First, we cast the place recognition problem as a classification task and use the available geotags to train a classifier for each location in the database in a similar manner to per-exemplar SVMs in object recognition. Second, as only one or a few positive training examples are available for each location, we propose two methods to calibrate all the per-location SVM classifiers without the need for additional positive training data. The first method relies on p-values from statistical hypothesis testing and uses only the available negative training data. The second method performs an affine calibration by appropriately normalizing the learnt classifier hyperplane and does not need any additional labelled training data. We test the proposed place recognitionmethod with the bag-of-visual-words and Fisher vector image representations suitable for large scale indexing. Experiments are performed on three datasets: 25,000 and 55,000 geotagged street view images of Pittsburgh, and the 24/7 Tokyo benchmark containing 76,000 images with varying illumination conditions. The results show improved place recognition accuracy of the learnt image representation over direct matching of raw image descriptors.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E13015" target="_blank" >7E13015: Planetary Robotics Data Exploitation</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Computer Vision
ISSN
0920-5691
e-ISSN
—
Svazek periodika
118
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
319-336
Kód UT WoS článku
000378789100003
EID výsledku v databázi Scopus
—