Performance evaluation of computation offloading from mobile device to the edge of mobile network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00304744" target="_blank" >RIV/68407700:21230/16:00304744 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/CSCN.2016.7785153" target="_blank" >http://dx.doi.org/10.1109/CSCN.2016.7785153</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CSCN.2016.7785153" target="_blank" >10.1109/CSCN.2016.7785153</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Performance evaluation of computation offloading from mobile device to the edge of mobile network
Popis výsledku v původním jazyce
Small Cell Cloud (SCC) consists of Cloud-enabled Small Cells (CeSCs), which serve as radio end-points for mobile user equipments (UEs) and host computation offloaded from mobile UEs. SCC hereby brings advantages of a centralized cloud computation to the users' vicinity. The SCC architecture provides a mechanism for distribution of computation demand across the CeSCs. An effectiveness of the offloading is determined based on quality of radio channel between the UEs and the CeSC and predicted computation complexity. In this paper, we introduce an implementation of an offloading framework to facilitate adaptation of mobile apps for the SCC and to handle low-level communication between the app and the SCC. An evaluation of the offloading framework is conducted using Augmented Reality (AR) app, which requires intensive computations and low latency. The offloading framework and the AR app are a basement for the SCC testbed used to proof the concept of the computation offloading. Various computation and radio parameters are investigated to reveal benefits of the SCC. According to the performed measurements, the computation offloading can decrease latency up to 88 % and energy consumption of the UEs up to 93 %.
Název v anglickém jazyce
Performance evaluation of computation offloading from mobile device to the edge of mobile network
Popis výsledku anglicky
Small Cell Cloud (SCC) consists of Cloud-enabled Small Cells (CeSCs), which serve as radio end-points for mobile user equipments (UEs) and host computation offloaded from mobile UEs. SCC hereby brings advantages of a centralized cloud computation to the users' vicinity. The SCC architecture provides a mechanism for distribution of computation demand across the CeSCs. An effectiveness of the offloading is determined based on quality of radio channel between the UEs and the CeSC and predicted computation complexity. In this paper, we introduce an implementation of an offloading framework to facilitate adaptation of mobile apps for the SCC and to handle low-level communication between the app and the SCC. An evaluation of the offloading framework is conducted using Augmented Reality (AR) app, which requires intensive computations and low latency. The offloading framework and the AR app are a basement for the SCC testbed used to proof the concept of the computation offloading. Various computation and radio parameters are investigated to reveal benefits of the SCC. According to the performed measurements, the computation offloading can decrease latency up to 88 % and energy consumption of the UEs up to 93 %.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE Conference on Standards for Communications and Networking (CSCN)
ISBN
978-1-5090-3862-6
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
IEEE Communications Society
Místo vydání
Anchorage
Místo konání akce
Berlin
Datum konání akce
30. 10. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000391392900011