Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Morita Equivalence for Many-Sorted Enriched Theories

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00305035" target="_blank" >RIV/68407700:21230/16:00305035 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s10485-015-9406-y" target="_blank" >http://dx.doi.org/10.1007/s10485-015-9406-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10485-015-9406-y" target="_blank" >10.1007/s10485-015-9406-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Morita Equivalence for Many-Sorted Enriched Theories

  • Popis výsledku v původním jazyce

    Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adamek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.

  • Název v anglickém jazyce

    Morita Equivalence for Many-Sorted Enriched Theories

  • Popis výsledku anglicky

    Morita equivalence detects the situation in which two different theories admit the same class of models for the given theories. We generalise the result of Adamek, Sobral and Sousa concerning Morita equivalence of many-sorted algebraic theories. This generalisation is two-fold. We work in an enriched setting, so the result is parametric in the choice of enrichment. Secondly, the result works for a reasonably general notion of a theory: the class of limits in the theory can be varied. As an example of an application of our result, we show enriched and many-sorted Morita equivalence results, and we recover the known results in the ordinary case.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP202%2F11%2F1632" target="_blank" >GAP202/11/1632: Algebraické metody v teorii důkazů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Categorical Structures

  • ISSN

    0927-2852

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    20

  • Strana od-do

    825-844

  • Kód UT WoS článku

    000388577800003

  • EID výsledku v databázi Scopus

    2-s2.0-84947788672