Multidimensional Cloud Latency Monitoring and Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00305157" target="_blank" >RIV/68407700:21230/16:00305157 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.comnet.2016.06.011" target="_blank" >http://dx.doi.org/10.1016/j.comnet.2016.06.011</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.comnet.2016.06.011" target="_blank" >10.1016/j.comnet.2016.06.011</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multidimensional Cloud Latency Monitoring and Evaluation
Popis výsledku v původním jazyce
Measuring or evaluating performance of a Cloud service is a non-trivial and highly ambiguous task. We focus on Cloud-service latency from the user’s point of view, and, to this end, utilize the multidimensional latency measurements obtained using an in-house designed active-probing platform, CLAudit, deployed across PlanetLab and Microsoft Azure datacenters. The multiple geographic Vantage Points, multiple protocol layers and multiple datacenter locations of CLAudit measurements allow us to pinpoint with great precision if, where and what kind of a particular latency-generating event has happened. We analyze and interpret measurements over two one-month time-intervals, one in 2013 and one in 2016. As these traces are large, an automated interpretation has been appended to the data-capture process. In summary, we demonstrate the utility of the multidimensional approach and document the differences in the measured Cloud-services latency over time. Our measurements data is publicly available and we encourage the research community to use it for verification and further studies.
Název v anglickém jazyce
Multidimensional Cloud Latency Monitoring and Evaluation
Popis výsledku anglicky
Measuring or evaluating performance of a Cloud service is a non-trivial and highly ambiguous task. We focus on Cloud-service latency from the user’s point of view, and, to this end, utilize the multidimensional latency measurements obtained using an in-house designed active-probing platform, CLAudit, deployed across PlanetLab and Microsoft Azure datacenters. The multiple geographic Vantage Points, multiple protocol layers and multiple datacenter locations of CLAudit measurements allow us to pinpoint with great precision if, where and what kind of a particular latency-generating event has happened. We analyze and interpret measurements over two one-month time-intervals, one in 2013 and one in 2016. As these traces are large, an automated interpretation has been appended to the data-capture process. In summary, we demonstrate the utility of the multidimensional approach and document the differences in the measured Cloud-services latency over time. Our measurements data is publicly available and we encourage the research community to use it for verification and further studies.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Networks
ISSN
1389-1286
e-ISSN
—
Svazek periodika
107
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
104-120
Kód UT WoS článku
000385328600009
EID výsledku v databázi Scopus
2-s2.0-84991800844