Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fine-grained Recognition of Plants from Images

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00307202" target="_blank" >RIV/68407700:21230/16:00307202 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://cmp.felk.cvut.cz/pub/cmp/articles/sulc/Sulc-TR-2016-09.pdf" target="_blank" >http://cmp.felk.cvut.cz/pub/cmp/articles/sulc/Sulc-TR-2016-09.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fine-grained Recognition of Plants from Images

  • Popis výsledku v původním jazyce

    The work focuses on automatic and semi-automatic fine-grained recognition of plants from an image, set of images or videos. Computer vision based plant recognition is a challenging problem due to the variable appearance of plants, high intra-class variability and small inter-class differences, complex geometry and multi-scale hierarchical structure. Plant recognition tasks, ranging from identification of plants from specific plant organs, to general plant recognition and localization "in the wild", are discussed. State-of-the-art methods are reviewed and examples of applications are presented, such as mobile apps for plant recognition, automatic mapping of plant species distribution or automation in agriculture. Our contributions so far include the state-of-the-art methods for leaf and bark recognition using the Fast Features Invariant to Rotation and Scale of Texture, studies of texture- and color-based recognition methods, as well as a deep learning contribution to the PlantCLEF 2016 plant identification challenge, achieving very competitive results. The goals of the thesis are to further study the plant recognition tasks and propose methods suitable for detection, localization and recognition of plants from images at relatively low computational cost, making them suitable for the proposed applications. Extensions to related problems are discussed, including recognition of other natural objects and species, and other fine-grained recognition problems such as food product classification.

  • Název v anglickém jazyce

    Fine-grained Recognition of Plants from Images

  • Popis výsledku anglicky

    The work focuses on automatic and semi-automatic fine-grained recognition of plants from an image, set of images or videos. Computer vision based plant recognition is a challenging problem due to the variable appearance of plants, high intra-class variability and small inter-class differences, complex geometry and multi-scale hierarchical structure. Plant recognition tasks, ranging from identification of plants from specific plant organs, to general plant recognition and localization "in the wild", are discussed. State-of-the-art methods are reviewed and examples of applications are presented, such as mobile apps for plant recognition, automatic mapping of plant species distribution or automation in agriculture. Our contributions so far include the state-of-the-art methods for leaf and bark recognition using the Fast Features Invariant to Rotation and Scale of Texture, studies of texture- and color-based recognition methods, as well as a deep learning contribution to the PlantCLEF 2016 plant identification challenge, achieving very competitive results. The goals of the thesis are to further study the plant recognition tasks and propose methods suitable for detection, localization and recognition of plants from images at relatively low computational cost, making them suitable for the proposed applications. Extensions to related problems are discussed, including recognition of other natural objects and species, and other fine-grained recognition problems such as food product classification.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP103%2F12%2FG084" target="_blank" >GBP103/12/G084: Centrum pro multi-modální interpretaci dat velkého rozsahu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů