Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00307384" target="_blank" >RIV/68407700:21230/16:00307384 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_bartos.pdf" target="_blank" >https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_bartos.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants
Popis výsledku v původním jazyce
New and unseen polymorphic malware, zero-day attacks, or other types of advanced persistent threats are usually not detected by signature-based security devices, firewalls, or anti-viruses. This represents a challenge to the network security industry as the amount and variability of incidents has been increasing. Consequently, this complicates the design of learning-based detection systems relying on features extracted from network data. The problem is caused by different joint distribution of observation (features) and labels in the training and testing data sets. This paper proposes a classification system designed to detect both known as well as previously-unseen security threats. The classifiers use statistical feature representation computed from the network traffic and learn to recognize malicious behavior. The representation is designed and optimized to be invariant to the most common changes of malware behaviors. This is achieved in part by a feature histogram constructed for each group of HTTP flows (proxy log records) of a user visiting a particular hostname and in part by a feature self-similarity matrix computed for each group. The parameters of the representation (histogram bins) are optimized and learned based on the training samples along with the classifiers. The proposed classification system was deployed on large corporate networks, where it detected 2,090 new and unseen variants of malware samples with 90% precision (9 of 10 alerts were malicious), which is a considerable improvement when compared to the current flow-based approaches or existing signature-based web security devices.
Název v anglickém jazyce
Optimized Invariant Representation of Network Traffic for Detecting Unseen Malware Variants
Popis výsledku anglicky
New and unseen polymorphic malware, zero-day attacks, or other types of advanced persistent threats are usually not detected by signature-based security devices, firewalls, or anti-viruses. This represents a challenge to the network security industry as the amount and variability of incidents has been increasing. Consequently, this complicates the design of learning-based detection systems relying on features extracted from network data. The problem is caused by different joint distribution of observation (features) and labels in the training and testing data sets. This paper proposes a classification system designed to detect both known as well as previously-unseen security threats. The classifiers use statistical feature representation computed from the network traffic and learn to recognize malicious behavior. The representation is designed and optimized to be invariant to the most common changes of malware behaviors. This is achieved in part by a feature histogram constructed for each group of HTTP flows (proxy log records) of a user visiting a particular hostname and in part by a feature self-similarity matrix computed for each group. The parameters of the representation (histogram bins) are optimized and learned based on the training samples along with the classifiers. The proposed classification system was deployed on large corporate networks, where it detected 2,090 new and unseen variants of malware samples with 90% precision (9 of 10 alerts were malicious), which is a considerable improvement when compared to the current flow-based approaches or existing signature-based web security devices.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 25th USENIX Security Symposium
ISBN
978-1-931971-32-4
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
807-822
Název nakladatele
The USENIX Association
Místo vydání
—
Místo konání akce
Austin, Texas
Datum konání akce
10. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000385263000048