Polynomial and Extensible Solutions in Lock-Chart Solving
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F16%3A00311856" target="_blank" >RIV/68407700:21230/16:00311856 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1080/08839514.2017.1279110" target="_blank" >http://dx.doi.org/10.1080/08839514.2017.1279110</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/08839514.2017.1279110" target="_blank" >10.1080/08839514.2017.1279110</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial and Extensible Solutions in Lock-Chart Solving
Popis výsledku v původním jazyce
Lock-chart (also known as master-key system) solving is a process for designing mechanical keys and locks so that every key can open and be blocked in a user-defined set of locks. We present several algorithms as a result of our 3 years industrial collaboration project, chosen by their asymptotic time complexity and extensibility, which is the ability to add new keys and locks and satisfy the previously unforeseen blocking requirements. Our strongest result is a linear-time algorithm to find the largest diagonal lock-chart with a condition on mechanical properties of keys. Without these restrictions, but given a solution for master keys, the problem is translated into a maximum independent set problem and a greedy approximation is proposed. We evaluate the algorithms on a generated dataset using a non-backtracking procedure to simulate minimal extensions. Both approaches are suggested as heuristics or subroutines for a backtracking constraint satisfaction problem-based (CSP) solver.
Název v anglickém jazyce
Polynomial and Extensible Solutions in Lock-Chart Solving
Popis výsledku anglicky
Lock-chart (also known as master-key system) solving is a process for designing mechanical keys and locks so that every key can open and be blocked in a user-defined set of locks. We present several algorithms as a result of our 3 years industrial collaboration project, chosen by their asymptotic time complexity and extensibility, which is the ability to add new keys and locks and satisfy the previously unforeseen blocking requirements. Our strongest result is a linear-time algorithm to find the largest diagonal lock-chart with a condition on mechanical properties of keys. Without these restrictions, but given a solution for master keys, the problem is translated into a maximum independent set problem and a greedy approximation is proposed. We evaluate the algorithms on a generated dataset using a non-backtracking procedure to simulate minimal extensions. Both approaches are suggested as heuristics or subroutines for a backtracking constraint satisfaction problem-based (CSP) solver.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Artificial Intelligence
ISSN
0883-9514
e-ISSN
1087-6545
Svazek periodika
30
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
923-941
Kód UT WoS článku
000397335700002
EID výsledku v databázi Scopus
2-s2.0-85013498051