T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00307060" target="_blank" >RIV/68407700:21230/17:00307060 - isvavai.cz</a>
Výsledek na webu
<a href="http://cmp.felk.cvut.cz/t-less" target="_blank" >http://cmp.felk.cvut.cz/t-less</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/WACV.2017.103" target="_blank" >10.1109/WACV.2017.103</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects
Popis výsledku v původním jazyce
We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or reflectance properties. The objects exhibit symmetries and mutual similarities in shape and/or size. Compared to other datasets, a unique property is that some of the objects are parts of others. The dataset includes training and test images that were captured with three synchronized sensors, specifically a structured-light and a time-of-flight RGB-D sensor and a high-resolution RGB camera. There are approximately 39K training and 10K test images from each sensor. Additionally, two types of 3D models are provided for each object, i.e. a manually created CAD model and a semi-automatically reconstructed one. Training images depict individual objects against a black background. Test images originate from twenty test scenes having varying complexity, which increases from simple scenes with several isolated objects to very challenging ones with multiple instances of several objects and with a high amount of clutter and occlusion. The images were captured from a systematically sampled view sphere around the object/scene, and are annotated with accurate ground truth 6D poses of all modeled objects. Initial evaluation results indicate that the state of the art in 6D object pose estimation has ample room for improvement, especially in difficult cases with significant occlusion. The T-LESS dataset is available online at cmp.felk.cvut.cz/t-less.
Název v anglickém jazyce
T-LESS: An RGB-D Dataset for 6D Pose Estimation of Texture-less Objects
Popis výsledku anglicky
We introduce T-LESS, a new public dataset for estimating the 6D pose, i.e. translation and rotation, of texture-less rigid objects. The dataset features thirty industry-relevant objects with no significant texture and no discriminative color or reflectance properties. The objects exhibit symmetries and mutual similarities in shape and/or size. Compared to other datasets, a unique property is that some of the objects are parts of others. The dataset includes training and test images that were captured with three synchronized sensors, specifically a structured-light and a time-of-flight RGB-D sensor and a high-resolution RGB camera. There are approximately 39K training and 10K test images from each sensor. Additionally, two types of 3D models are provided for each object, i.e. a manually created CAD model and a semi-automatically reconstructed one. Training images depict individual objects against a black background. Test images originate from twenty test scenes having varying complexity, which increases from simple scenes with several isolated objects to very challenging ones with multiple instances of several objects and with a high amount of clutter and occlusion. The images were captured from a systematically sampled view sphere around the object/scene, and are annotated with accurate ground truth 6D poses of all modeled objects. Initial evaluation results indicate that the state of the art in 6D object pose estimation has ample room for improvement, especially in difficult cases with significant occlusion. The T-LESS dataset is available online at cmp.felk.cvut.cz/t-less.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020415" target="_blank" >TE01020415: Centrum kompetence ve zpracování vizuálních informací (V3C - Visual Computing Competence Center)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
ISBN
978-1-5090-4822-9
ISSN
2472-6737
e-ISSN
—
Počet stran výsledku
9
Strana od-do
880-888
Název nakladatele
IEEE
Místo vydání
New Jersey
Místo konání akce
Santa Rosa
Datum konání akce
24. 3. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000404165800093