An Experimental Study of Hyper-heuristic Selection and Acceptance Mechanism for Combinatorial T-way Test Suite Generation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00308979" target="_blank" >RIV/68407700:21230/17:00308979 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0020025517305820" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020025517305820</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2017.03.007" target="_blank" >10.1016/j.ins.2017.03.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Experimental Study of Hyper-heuristic Selection and Acceptance Mechanism for Combinatorial T-way Test Suite Generation
Popis výsledku v původním jazyce
Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t-way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, meta-heuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyper-heuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS), using the t-way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance.
Název v anglickém jazyce
An Experimental Study of Hyper-heuristic Selection and Acceptance Mechanism for Combinatorial T-way Test Suite Generation
Popis výsledku anglicky
Recently, many meta-heuristic algorithms have been proposed to serve as the basis of a t-way test generation strategy (where t indicates the interaction strength) including Genetic Algorithms (GA), Ant Colony Optimization (ACO), Simulated Annealing (SA), Cuckoo Search (CS), Particle Swarm Optimization (PSO), and Harmony Search (HS). Although useful, meta-heuristic algorithms that make up these strategies often require specific domain knowledge in order to allow effective tuning before good quality solutions can be obtained. Hyper-heuristics provide an alternative methodology to meta-heuristics which permit adaptive selection and/or generation of meta-heuristics automatically during the search process. This paper describes our experience with four hyper-heuristic selection and acceptance mechanisms namely Exponential Monte Carlo with counter (EMCQ), Choice Function (CF), Improvement Selection Rules (ISR), and newly developed Fuzzy Inference Selection (FIS), using the t-way test generation problem as a case study. Based on the experimental results, we offer insights on why each strategy differs in terms of its performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Information Sciences
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
399
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
121-153
Kód UT WoS článku
000400203900008
EID výsledku v databázi Scopus
2-s2.0-85015674025