Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

3D-Vision Based Detection, Localisation and Sizing of Broccoli Heads in the Field

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311498" target="_blank" >RIV/68407700:21230/17:00311498 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1002/rob.21726" target="_blank" >http://dx.doi.org/10.1002/rob.21726</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/rob.21726" target="_blank" >10.1002/rob.21726</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    3D-Vision Based Detection, Localisation and Sizing of Broccoli Heads in the Field

  • Popis výsledku v původním jazyce

    This paper describes a 3D vision system for robotic harvesting of broccoli using low-cost RGB-D sensors, which was developed and evaluated using sensory data collected under real-world field conditions in both the UK and Spain. The presented method addresses the tasks of detecting mature broccoli heads in the field and providing their 3D locations relative to the vehicle. The paper evaluates different 3D features, machine learning and temporal filtering methods for detection of broccoli heads. Our experiments show that a combination of Viewpoint Feature Histograms, Support Vector Machine classifier and a temporal filter to track the detected heads results in a system that detects broccoli heads with high precision. We also show that the temporal filtering can be used to generate a 3D map of the broccoli head positions in the field. Additionally we present methods for automatically estimating the size of the broccoli heads, to determine when a head is ready for harvest. All of the methods were evaluated using ground-truth data from both the UK and Spain, which we also make available to the research community for subsequent algorithm development and result comparison. Cross-validation of the system trained on the UK dataset on the Spanish dataset, and vice versa, indicated good generalisation capabilities of the system, confirming the strong potential of low-cost 3D imaging for commercial broccoli harvesting.

  • Název v anglickém jazyce

    3D-Vision Based Detection, Localisation and Sizing of Broccoli Heads in the Field

  • Popis výsledku anglicky

    This paper describes a 3D vision system for robotic harvesting of broccoli using low-cost RGB-D sensors, which was developed and evaluated using sensory data collected under real-world field conditions in both the UK and Spain. The presented method addresses the tasks of detecting mature broccoli heads in the field and providing their 3D locations relative to the vehicle. The paper evaluates different 3D features, machine learning and temporal filtering methods for detection of broccoli heads. Our experiments show that a combination of Viewpoint Feature Histograms, Support Vector Machine classifier and a temporal filter to track the detected heads results in a system that detects broccoli heads with high precision. We also show that the temporal filtering can be used to generate a 3D map of the broccoli head positions in the field. Additionally we present methods for automatically estimating the size of the broccoli heads, to determine when a head is ready for harvest. All of the methods were evaluated using ground-truth data from both the UK and Spain, which we also make available to the research community for subsequent algorithm development and result comparison. Cross-validation of the system trained on the UK dataset on the Spanish dataset, and vice versa, indicated good generalisation capabilities of the system, confirming the strong potential of low-cost 3D imaging for commercial broccoli harvesting.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ17-27006Y" target="_blank" >GJ17-27006Y: Prostorově temporální representace pro dlouhodobou navigaci mobilních robotů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Field Robotics

  • ISSN

    1556-4959

  • e-ISSN

    1556-4967

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    1505-1518

  • Kód UT WoS článku

    000414680500007

  • EID výsledku v databázi Scopus

    2-s2.0-85020072313