3D-Vision Based Detection, Localisation and Sizing of Broccoli Heads in the Field
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311498" target="_blank" >RIV/68407700:21230/17:00311498 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/rob.21726" target="_blank" >http://dx.doi.org/10.1002/rob.21726</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/rob.21726" target="_blank" >10.1002/rob.21726</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D-Vision Based Detection, Localisation and Sizing of Broccoli Heads in the Field
Popis výsledku v původním jazyce
This paper describes a 3D vision system for robotic harvesting of broccoli using low-cost RGB-D sensors, which was developed and evaluated using sensory data collected under real-world field conditions in both the UK and Spain. The presented method addresses the tasks of detecting mature broccoli heads in the field and providing their 3D locations relative to the vehicle. The paper evaluates different 3D features, machine learning and temporal filtering methods for detection of broccoli heads. Our experiments show that a combination of Viewpoint Feature Histograms, Support Vector Machine classifier and a temporal filter to track the detected heads results in a system that detects broccoli heads with high precision. We also show that the temporal filtering can be used to generate a 3D map of the broccoli head positions in the field. Additionally we present methods for automatically estimating the size of the broccoli heads, to determine when a head is ready for harvest. All of the methods were evaluated using ground-truth data from both the UK and Spain, which we also make available to the research community for subsequent algorithm development and result comparison. Cross-validation of the system trained on the UK dataset on the Spanish dataset, and vice versa, indicated good generalisation capabilities of the system, confirming the strong potential of low-cost 3D imaging for commercial broccoli harvesting.
Název v anglickém jazyce
3D-Vision Based Detection, Localisation and Sizing of Broccoli Heads in the Field
Popis výsledku anglicky
This paper describes a 3D vision system for robotic harvesting of broccoli using low-cost RGB-D sensors, which was developed and evaluated using sensory data collected under real-world field conditions in both the UK and Spain. The presented method addresses the tasks of detecting mature broccoli heads in the field and providing their 3D locations relative to the vehicle. The paper evaluates different 3D features, machine learning and temporal filtering methods for detection of broccoli heads. Our experiments show that a combination of Viewpoint Feature Histograms, Support Vector Machine classifier and a temporal filter to track the detected heads results in a system that detects broccoli heads with high precision. We also show that the temporal filtering can be used to generate a 3D map of the broccoli head positions in the field. Additionally we present methods for automatically estimating the size of the broccoli heads, to determine when a head is ready for harvest. All of the methods were evaluated using ground-truth data from both the UK and Spain, which we also make available to the research community for subsequent algorithm development and result comparison. Cross-validation of the system trained on the UK dataset on the Spanish dataset, and vice versa, indicated good generalisation capabilities of the system, confirming the strong potential of low-cost 3D imaging for commercial broccoli harvesting.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-27006Y" target="_blank" >GJ17-27006Y: Prostorově temporální representace pro dlouhodobou navigaci mobilních robotů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Field Robotics
ISSN
1556-4959
e-ISSN
1556-4967
Svazek periodika
34
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
1505-1518
Kód UT WoS článku
000414680500007
EID výsledku v databázi Scopus
2-s2.0-85020072313