Large-scale robust transductive support vector machines
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00311979" target="_blank" >RIV/68407700:21230/17:00311979 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0925231217300292" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925231217300292</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neucom.2017.01.012" target="_blank" >10.1016/j.neucom.2017.01.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Large-scale robust transductive support vector machines
Popis výsledku v původním jazyce
In this paper, we propose a robust and fast transductive support vector machine (RTSVM) classifier that can be applied to large-scale data. To this end, we use the robust Ramp loss instead of Hinge loss for labeled data samples. The resulting optimization problem is non-convex but it can be decomposed to a convex and concave parts. Therefore, the optimization is accomplished iteratively by solving a sequence of convex problems known as concave-convex procedure. Stochastic gradient (SG) is used to solve the convex problem at each iteration, thus the proposed method scales well with large training set size for the linear case (to the best of our knowledge, it is the second transductive classification method that is practical for more than a million data). To extend the proposed method to the nonlinear case, we proposed two alternatives where one uses the primal optimization problem and the other uses the dual. But in contrast to the linear case, both alternatives do not scale well with large-scale data. Experimental results show that the proposed method achieves comparable results to other related transductive SVM methods, but it is faster than other transductive learning methods and it is more robust to the noisy data.
Název v anglickém jazyce
Large-scale robust transductive support vector machines
Popis výsledku anglicky
In this paper, we propose a robust and fast transductive support vector machine (RTSVM) classifier that can be applied to large-scale data. To this end, we use the robust Ramp loss instead of Hinge loss for labeled data samples. The resulting optimization problem is non-convex but it can be decomposed to a convex and concave parts. Therefore, the optimization is accomplished iteratively by solving a sequence of convex problems known as concave-convex procedure. Stochastic gradient (SG) is used to solve the convex problem at each iteration, thus the proposed method scales well with large training set size for the linear case (to the best of our knowledge, it is the second transductive classification method that is practical for more than a million data). To extend the proposed method to the nonlinear case, we proposed two alternatives where one uses the primal optimization problem and the other uses the dual. But in contrast to the linear case, both alternatives do not scale well with large-scale data. Experimental results show that the proposed method achieves comparable results to other related transductive SVM methods, but it is faster than other transductive learning methods and it is more robust to the noisy data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LL1303" target="_blank" >LL1303: Vyhledávání vizuálních kategorií ve velkém množství obrázků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
1872-8286
Svazek periodika
235
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
199-209
Kód UT WoS článku
000395219700021
EID výsledku v databázi Scopus
2-s2.0-85009789274