Dipole and multipole models of dielectrophoresis for a non-negligible particle size: Simulations and experiments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00312475" target="_blank" >RIV/68407700:21230/17:00312475 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1002/elps.201600466" target="_blank" >http://dx.doi.org/10.1002/elps.201600466</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/elps.201600466" target="_blank" >10.1002/elps.201600466</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dipole and multipole models of dielectrophoresis for a non-negligible particle size: Simulations and experiments
Popis výsledku v původním jazyce
Mathematical models of dielectrophoresis play an important role in the design of experiments, analysis of results, and even operation of some devices. In this paper, we test the accuracy of existing models in both simulations and laboratory experiments. We test the accuracy of the most common model that involves a point-dipole approximation of the induced field, when the small-particle assumption is broken. In simulations, comparisons against a model based on the Maxwell stress tensor show that even the point-dipole approximation provides good results for a large particle close to the electrodes. In addition, we study a refinement of the model offered by multipole approximations (quadrupole, and octupole). We also show that the voltages on the electrodes influence the error of the model because they affect the positions of the field nulls and the nulls of the higher-order derivatives. Experiments with a parallel electrode array and a polystyrene microbead reveal that the models predict the force with an error that cannot be eliminated even with the most accurate model. Nonetheless, it is acceptable for some purposes such as a model-based control system design.
Název v anglickém jazyce
Dipole and multipole models of dielectrophoresis for a non-negligible particle size: Simulations and experiments
Popis výsledku anglicky
Mathematical models of dielectrophoresis play an important role in the design of experiments, analysis of results, and even operation of some devices. In this paper, we test the accuracy of existing models in both simulations and laboratory experiments. We test the accuracy of the most common model that involves a point-dipole approximation of the induced field, when the small-particle assumption is broken. In simulations, comparisons against a model based on the Maxwell stress tensor show that even the point-dipole approximation provides good results for a large particle close to the electrodes. In addition, we study a refinement of the model offered by multipole approximations (quadrupole, and octupole). We also show that the voltages on the electrodes influence the error of the model because they affect the positions of the field nulls and the nulls of the higher-order derivatives. Experiments with a parallel electrode array and a polystyrene microbead reveal that the models predict the force with an error that cannot be eliminated even with the most accurate model. Nonetheless, it is acceptable for some purposes such as a model-based control system design.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP206%2F12%2FG014" target="_blank" >GBP206/12/G014: Centrum pokročilých bioanalytických technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrophoresis
ISSN
0173-0835
e-ISSN
1522-2683
Svazek periodika
38
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
1419-1426
Kód UT WoS článku
000402622400003
EID výsledku v databázi Scopus
2-s2.0-85018449232