Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315420" target="_blank" >RIV/68407700:21230/17:00315420 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024451" target="_blank" >https://journals.aps.org/prb/abstract/10.1103/PhysRevB.96.024451</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevB.96.024451" target="_blank" >10.1103/PhysRevB.96.024451</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides
Popis výsledku v původním jazyce
Electric-field control of magnetization promises to substantially enhance the energy efficiency of device applications ranging from data storage to solid-state cooling. However, the intrinsic linear magnetoelectric effect is typically small in bulk materials. In thin films, electric-field tuning of spin-orbit-interaction phenomena (e.g., magnetocrystalline anisotropy) has been reported to achieve a partial control of the magnetic state. Here we explore the piezomagnetic effect (PME), driven by frustrated exchange interactions, which can induce a net magnetization in an antiferromagnet and reverse its direction via elastic strain generated piezoelectrically. Our ab initio study of PME in Mn-based antiperovskite nitrides identified an extraordinarily large PME in Mn3SnN available at room temperature. We explain the magnitude of PME based on features of the electronic structure and show an inverse proportionality between the simulated zero-temperature PME and the magnetovolume effect at the magnetic (Neel) transition measured by Takenaka et al. in nine antiferromagnetic Mn(3)AN systems.
Název v anglickém jazyce
Piezomagnetism as a counterpart of the magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides
Popis výsledku anglicky
Electric-field control of magnetization promises to substantially enhance the energy efficiency of device applications ranging from data storage to solid-state cooling. However, the intrinsic linear magnetoelectric effect is typically small in bulk materials. In thin films, electric-field tuning of spin-orbit-interaction phenomena (e.g., magnetocrystalline anisotropy) has been reported to achieve a partial control of the magnetic state. Here we explore the piezomagnetic effect (PME), driven by frustrated exchange interactions, which can induce a net magnetization in an antiferromagnet and reverse its direction via elastic strain generated piezoelectrically. Our ab initio study of PME in Mn-based antiperovskite nitrides identified an extraordinarily large PME in Mn3SnN available at room temperature. We explain the magnitude of PME based on features of the electronic structure and show an inverse proportionality between the simulated zero-temperature PME and the magnetovolume effect at the magnetic (Neel) transition measured by Takenaka et al. in nine antiferromagnetic Mn(3)AN systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW B
ISSN
2469-9950
e-ISSN
2469-9969
Svazek periodika
96
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000406630400004
EID výsledku v databázi Scopus
2-s2.0-85027373323