Unsupervised learning for surveillance planning with team of aerial vehicles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315450" target="_blank" >RIV/68407700:21230/17:00315450 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7966405/" target="_blank" >http://ieeexplore.ieee.org/document/7966405/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN.2017.7966405" target="_blank" >10.1109/IJCNN.2017.7966405</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unsupervised learning for surveillance planning with team of aerial vehicles
Popis výsledku v původním jazyce
In this paper, we extent an existing self-organizing map (SOM)-based approach for the Dubins traveling salesman problem (DTSP) to solve its multi-vehicle variant generalized for visiting target regions called k-DTSP with Neighborhoods (k-DTSPN). The Dubins TSP is a variant of the combinatorial TSP for curvature-constrained vehicles. The problem is to determine a cost efficient path to visit a given set of continuous regions while the path allows to satisfy kinematic constraints of non-holonomic vehicles. The k-DTSPN is a generalization to determine k such paths, one for each vehicle. Although the k-DTSPN has been addressed by evolutionary methods, the proposed approach is able to provide solutions very quickly in units of seconds on conventional computationally resources which makes the proposed SOM-based approach suitable for on-line planning. The studied problem is motivated by surveillance task in which it is required to quickly provide information about the given set of target locations. Therefore, real computational requirements are crucial properties of the desired k-DTSPN solver. The proposed method meets this requirement and feasibility of the found solutions are demonstrated not only in computer simulations but also with a practical deployment on real aerial vehicles.
Název v anglickém jazyce
Unsupervised learning for surveillance planning with team of aerial vehicles
Popis výsledku anglicky
In this paper, we extent an existing self-organizing map (SOM)-based approach for the Dubins traveling salesman problem (DTSP) to solve its multi-vehicle variant generalized for visiting target regions called k-DTSP with Neighborhoods (k-DTSPN). The Dubins TSP is a variant of the combinatorial TSP for curvature-constrained vehicles. The problem is to determine a cost efficient path to visit a given set of continuous regions while the path allows to satisfy kinematic constraints of non-holonomic vehicles. The k-DTSPN is a generalization to determine k such paths, one for each vehicle. Although the k-DTSPN has been addressed by evolutionary methods, the proposed approach is able to provide solutions very quickly in units of seconds on conventional computationally resources which makes the proposed SOM-based approach suitable for on-line planning. The studied problem is motivated by surveillance task in which it is required to quickly provide information about the given set of target locations. Therefore, real computational requirements are crucial properties of the desired k-DTSPN solver. The proposed method meets this requirement and feasibility of the found solutions are demonstrated not only in computer simulations but also with a practical deployment on real aerial vehicles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-24206S" target="_blank" >GA16-24206S: Metody informatického plánování cest pro neholonomní mobilní roboty v úlohách monitorování a dohledu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the International Joint Conference on Neural Networks
ISBN
978-1-5090-6181-5
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
4340-4347
Název nakladatele
IEEE Xplore
Místo vydání
—
Místo konání akce
Anchorage
Datum konání akce
14. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426968704078