Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Self-Organizing Maps for Orienteering Problems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F17%3A00315452" target="_blank" >RIV/68407700:21230/17:00315452 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/7966175/" target="_blank" >http://ieeexplore.ieee.org/document/7966175/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/IJCNN.2017.7966175" target="_blank" >10.1109/IJCNN.2017.7966175</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Self-Organizing Maps for Orienteering Problems

  • Popis výsledku v původním jazyce

    This paper concerns principles of unsupervised learning of self-organizing maps (SOMs) to address optimization routing problems called the Orienteering Problem (OP) and its multi-vehicle variant called the Team Orienteering Problem (TOP). The problems are similar to the traveling salesman problem in finding an optimal tour to visit all the given locations, but here, each location has specified reward that can be collected by the tour and the problem is to select the most valuable subset of the locations that can be visited within the travel budget. In existing SOM for the OP, the locations to be visited are duplicated to adapt the network to locations with higher rewards more frequently. The proposed novel SOM-based solution overcomes this necessity and based on the presented results it significantly reduces the computational burden of the adaptation procedure. Besides, the proposed approach improves the quality of solutions and makes SOM competitive to existing heuristics for the OP, but still behind computationally expensive metaheuristics for the TOP. On the other hand, the main benefit of the SOM-based approaches over the existing heuristics is in solving the generalized variant of the OP and TOP with neighborhoods. These variants of the problem formulation allow to better utilize the travel budget for instances where the reward associated with the location can be collected by visiting a particular neighborhood of the location and not exactly the location itself. This generalized problem formulation better models situations of the robotic data collection, e.g., using wireless communication or range sensors.

  • Název v anglickém jazyce

    On Self-Organizing Maps for Orienteering Problems

  • Popis výsledku anglicky

    This paper concerns principles of unsupervised learning of self-organizing maps (SOMs) to address optimization routing problems called the Orienteering Problem (OP) and its multi-vehicle variant called the Team Orienteering Problem (TOP). The problems are similar to the traveling salesman problem in finding an optimal tour to visit all the given locations, but here, each location has specified reward that can be collected by the tour and the problem is to select the most valuable subset of the locations that can be visited within the travel budget. In existing SOM for the OP, the locations to be visited are duplicated to adapt the network to locations with higher rewards more frequently. The proposed novel SOM-based solution overcomes this necessity and based on the presented results it significantly reduces the computational burden of the adaptation procedure. Besides, the proposed approach improves the quality of solutions and makes SOM competitive to existing heuristics for the OP, but still behind computationally expensive metaheuristics for the TOP. On the other hand, the main benefit of the SOM-based approaches over the existing heuristics is in solving the generalized variant of the OP and TOP with neighborhoods. These variants of the problem formulation allow to better utilize the travel budget for instances where the reward associated with the location can be collected by visiting a particular neighborhood of the location and not exactly the location itself. This generalized problem formulation better models situations of the robotic data collection, e.g., using wireless communication or range sensors.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-24206S" target="_blank" >GA16-24206S: Metody informatického plánování cest pro neholonomní mobilní roboty v úlohách monitorování a dohledu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the International Joint Conference on Neural Networks

  • ISBN

    978-1-5090-6181-5

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

    2611-2620

  • Název nakladatele

    IEEE Xplore

  • Místo vydání

  • Místo konání akce

    Anchorage

  • Datum konání akce

    14. 5. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000426968702113