Ultrasonic Biopolymer Characterisation by Hysteresis Quantification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00316732" target="_blank" >RIV/68407700:21230/18:00316732 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/18:00316732
Výsledek na webu
<a href="http://www.ndt.net/article/ndtp2017/papers/Zatloukalova.pdf" target="_blank" >http://www.ndt.net/article/ndtp2017/papers/Zatloukalova.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ultrasonic Biopolymer Characterisation by Hysteresis Quantification
Popis výsledku v původním jazyce
Nonlinear characteristics are advanced indicators of the structure of viscoelastic materials. In this contribution, we focus on biopolymers (such as articular cartilage and skin tissue), and their typical amount of energy lost by mechanical loading/unloading represented by a hysteresis curve. For hysteresis modeling we use the Preisach-Mayergoyz space model, and restricted power distribution (Guyer extended distribution). Besides the power distribution parameters, the stress protocol is required as an input to obtain the modeled hysteresis curve, and to compare with experimental results. Knowing the experimental curve, an iterative numerical procedure for identification of true density function of opening and closing pressures was applied, and an optimization algorithm sought for the best (characteristic) distribution parameters for the specific soft tissue. For articular cartilage, experiments were performed on porcine patella sample in-situ using the device for ultrasound palpation. In the case of skin tissue, hysteresis curve was obtained from evaluation of the tensile force applied by the loading machine INSTRON 8800, and corresponding displacement measurement. The porcine skin tissue was loaded ex-vivo according to the basic loading-unloading protocol. The experimental results were compared to model hysteresis curves, and the typical model parameters were obtained by minimization of the L2-distance. For articular cartilage, the mean parameter values optimized by the simulated annealing algorithm were found (mean±standard deviation) α=0.25±0.01, and β=0.04±0.03, with L2-norm=0.3±0.02 for 10 repetitions. In the case of skin tissue, the model parameters were estimated as α=2.59±0.18, and β=0.59±0.32, with L2-norm=0.03±0.03 for 10 simulation runs. Material properties can be evaluated based on the described quantification, and potentially used for medical purposes and healing or cosmetics treatment evaluation.
Název v anglickém jazyce
Ultrasonic Biopolymer Characterisation by Hysteresis Quantification
Popis výsledku anglicky
Nonlinear characteristics are advanced indicators of the structure of viscoelastic materials. In this contribution, we focus on biopolymers (such as articular cartilage and skin tissue), and their typical amount of energy lost by mechanical loading/unloading represented by a hysteresis curve. For hysteresis modeling we use the Preisach-Mayergoyz space model, and restricted power distribution (Guyer extended distribution). Besides the power distribution parameters, the stress protocol is required as an input to obtain the modeled hysteresis curve, and to compare with experimental results. Knowing the experimental curve, an iterative numerical procedure for identification of true density function of opening and closing pressures was applied, and an optimization algorithm sought for the best (characteristic) distribution parameters for the specific soft tissue. For articular cartilage, experiments were performed on porcine patella sample in-situ using the device for ultrasound palpation. In the case of skin tissue, hysteresis curve was obtained from evaluation of the tensile force applied by the loading machine INSTRON 8800, and corresponding displacement measurement. The porcine skin tissue was loaded ex-vivo according to the basic loading-unloading protocol. The experimental results were compared to model hysteresis curves, and the typical model parameters were obtained by minimization of the L2-distance. For articular cartilage, the mean parameter values optimized by the simulated annealing algorithm were found (mean±standard deviation) α=0.25±0.01, and β=0.04±0.03, with L2-norm=0.3±0.02 for 10 repetitions. In the case of skin tissue, the model parameters were estimated as α=2.59±0.18, and β=0.59±0.32, with L2-norm=0.03±0.03 for 10 simulation runs. Material properties can be evaluated based on the described quantification, and potentially used for medical purposes and healing or cosmetics treatment evaluation.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
e-Journal of NDT
ISSN
1435-4934
e-ISSN
1435-4934
Svazek periodika
23
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—