Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Self-Localization of Unmanned Aerial Vehicles Based on Optical Flow in Inboard Camera Image

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00316982" target="_blank" >RIV/68407700:21230/18:00316982 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/book/10.1007%2F978-3-319-76072-8" target="_blank" >https://link.springer.com/book/10.1007%2F978-3-319-76072-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-76072-8_8" target="_blank" >10.1007/978-3-319-76072-8_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Self-Localization of Unmanned Aerial Vehicles Based on Optical Flow in Inboard Camera Image

  • Popis výsledku v původním jazyce

    This paper proposes and evaluates the implementation of a self-localization system intended for use in Unmanned Aerial Vehicles. Accurate localization is necessary for UAVs for efficient stabilization, navigation and collision avoidance. Conventionally, this requirement is fulfilled using external hardware infrastructure, such as Global Navigation Satellite System or visual motion-capture system. These approaches are, however, not applicable in environments where deployment of cumbersome motion capture equipment is not feasible, as well as in GNSS-denied environments. Systems based on Simultaneous Localization and Mapping (SLAM) require heavy and expensive onboard equipment and high amounts of data transmissions for sharing maps between UAVs. Availability of a system without these drawbacks is crucial for deployment of tight formations of multiple fully autonomous micro UAVs for both outdoor and indoor missions. The project was inspired by the often used sensor PX4FLOW Smart Camera. The aim was to develop a similar sensor, without the drawbacks observed in its use, as well as to make the operation of it more transparent and to make it independent of a specific hardware. Our proposed solution requires only a lightweight camera and a single-point range sensor. It is based on optical flow estimation from consecutive images obtained from downward-facing camera, coupled with a specialized RANSAC-inspired post-processing method that takes into account flight dynamics. This filtering makes it more robust against imperfect lighting, homogenous ground patches, random close objects and spurious errors. These features make this approach suitable even for coordinated flights through demanding forest-like environment. The system is designed mainly for horizontal velocity estimation, but specialized modifications were also made for vertical speed and yaw rotation rate estimation. These methods were tested in a simulator and subsequently in real-world conditions.

  • Název v anglickém jazyce

    Self-Localization of Unmanned Aerial Vehicles Based on Optical Flow in Inboard Camera Image

  • Popis výsledku anglicky

    This paper proposes and evaluates the implementation of a self-localization system intended for use in Unmanned Aerial Vehicles. Accurate localization is necessary for UAVs for efficient stabilization, navigation and collision avoidance. Conventionally, this requirement is fulfilled using external hardware infrastructure, such as Global Navigation Satellite System or visual motion-capture system. These approaches are, however, not applicable in environments where deployment of cumbersome motion capture equipment is not feasible, as well as in GNSS-denied environments. Systems based on Simultaneous Localization and Mapping (SLAM) require heavy and expensive onboard equipment and high amounts of data transmissions for sharing maps between UAVs. Availability of a system without these drawbacks is crucial for deployment of tight formations of multiple fully autonomous micro UAVs for both outdoor and indoor missions. The project was inspired by the often used sensor PX4FLOW Smart Camera. The aim was to develop a similar sensor, without the drawbacks observed in its use, as well as to make the operation of it more transparent and to make it independent of a specific hardware. Our proposed solution requires only a lightweight camera and a single-point range sensor. It is based on optical flow estimation from consecutive images obtained from downward-facing camera, coupled with a specialized RANSAC-inspired post-processing method that takes into account flight dynamics. This filtering makes it more robust against imperfect lighting, homogenous ground patches, random close objects and spurious errors. These features make this approach suitable even for coordinated flights through demanding forest-like environment. The system is designed mainly for horizontal velocity estimation, but specialized modifications were also made for vertical speed and yaw rotation rate estimation. These methods were tested in a simulator and subsequently in real-world conditions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20204 - Robotics and automatic control

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-24206S" target="_blank" >GA16-24206S: Metody informatického plánování cest pro neholonomní mobilní roboty v úlohách monitorování a dohledu</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Modelling and Simulation for Autonomous Systems (MESAS 2017)

  • ISBN

    978-3-319-76071-1

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    27

  • Strana od-do

    106-132

  • Název nakladatele

    Springer International Publishing AG

  • Místo vydání

    Cham

  • Místo konání akce

    Řím

  • Datum konání akce

    24. 10. 2017

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000444831600008