Fact-Alternating Mutex Groups for Classical Planning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00319881" target="_blank" >RIV/68407700:21230/18:00319881 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.jair.org/papers/paper5321.html" target="_blank" >http://www.jair.org/papers/paper5321.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1613/jair.5321" target="_blank" >10.1613/jair.5321</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fact-Alternating Mutex Groups for Classical Planning
Popis výsledku v původním jazyce
Mutex groups are defined in the context of STRIPS planning as sets of facts out of which, maximally, one can be true in any state reachable from the initial state. The importance of computing and exploiting mutex groups was repeatedly pointed out in many studies. However, the theoretical analysis of mutex groups is sparse in current literature. This work provides a complexity analysis showing that inference of mutex groups is as hard as planning itself (PSPACE-Complete) and it also shows a tight relationship between mutex groups and graph cliques. This result motivates us to propose a new type of mutex group called a fact-alternating mutex group (fam-group) of which inference is NP-Complete. Moreover, we introduce an algorithm for the inference of fam-groups based on integer linear programming that is complete with respect to the maximal fam-groups and we demonstrate how beneficial fam-groups can be in the translation of planning tasks into finite domain representation. Finally, we show that fam-groups can be used for the detection of dead- end states and we propose a simple algorithm for the pruning of operators and facts as a preprocessing step that takes advantage of the properties of fam-groups. The experimental evaluation of the pruning algorithm shows a substantial increase in a number of solved tasks in domains from the optimal deterministic track of the last two planning competitions (IPC 2011 and 2014).
Název v anglickém jazyce
Fact-Alternating Mutex Groups for Classical Planning
Popis výsledku anglicky
Mutex groups are defined in the context of STRIPS planning as sets of facts out of which, maximally, one can be true in any state reachable from the initial state. The importance of computing and exploiting mutex groups was repeatedly pointed out in many studies. However, the theoretical analysis of mutex groups is sparse in current literature. This work provides a complexity analysis showing that inference of mutex groups is as hard as planning itself (PSPACE-Complete) and it also shows a tight relationship between mutex groups and graph cliques. This result motivates us to propose a new type of mutex group called a fact-alternating mutex group (fam-group) of which inference is NP-Complete. Moreover, we introduce an algorithm for the inference of fam-groups based on integer linear programming that is complete with respect to the maximal fam-groups and we demonstrate how beneficial fam-groups can be in the translation of planning tasks into finite domain representation. Finally, we show that fam-groups can be used for the detection of dead- end states and we propose a simple algorithm for the pruning of operators and facts as a preprocessing step that takes advantage of the properties of fam-groups. The experimental evaluation of the pruning algorithm shows a substantial increase in a number of solved tasks in domains from the optimal deterministic track of the last two planning competitions (IPC 2011 and 2014).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ15-20433Y" target="_blank" >GJ15-20433Y: Heuristické prohledávání pro multiagentní a faktorové plánování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Artificial Intelligence Research
ISSN
1076-9757
e-ISSN
1943-5037
Svazek periodika
61
Číslo periodika v rámci svazku
March
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
47
Strana od-do
475-521
Kód UT WoS článku
000432399000006
EID výsledku v databázi Scopus
2-s2.0-85044158070