Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fact-Alternating Mutex Groups for Classical Planning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00319881" target="_blank" >RIV/68407700:21230/18:00319881 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.jair.org/papers/paper5321.html" target="_blank" >http://www.jair.org/papers/paper5321.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1613/jair.5321" target="_blank" >10.1613/jair.5321</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fact-Alternating Mutex Groups for Classical Planning

  • Popis výsledku v původním jazyce

    Mutex groups are defined in the context of STRIPS planning as sets of facts out of which, maximally, one can be true in any state reachable from the initial state. The importance of computing and exploiting mutex groups was repeatedly pointed out in many studies. However, the theoretical analysis of mutex groups is sparse in current literature. This work provides a complexity analysis showing that inference of mutex groups is as hard as planning itself (PSPACE-Complete) and it also shows a tight relationship between mutex groups and graph cliques. This result motivates us to propose a new type of mutex group called a fact-alternating mutex group (fam-group) of which inference is NP-Complete. Moreover, we introduce an algorithm for the inference of fam-groups based on integer linear programming that is complete with respect to the maximal fam-groups and we demonstrate how beneficial fam-groups can be in the translation of planning tasks into finite domain representation. Finally, we show that fam-groups can be used for the detection of dead- end states and we propose a simple algorithm for the pruning of operators and facts as a preprocessing step that takes advantage of the properties of fam-groups. The experimental evaluation of the pruning algorithm shows a substantial increase in a number of solved tasks in domains from the optimal deterministic track of the last two planning competitions (IPC 2011 and 2014).

  • Název v anglickém jazyce

    Fact-Alternating Mutex Groups for Classical Planning

  • Popis výsledku anglicky

    Mutex groups are defined in the context of STRIPS planning as sets of facts out of which, maximally, one can be true in any state reachable from the initial state. The importance of computing and exploiting mutex groups was repeatedly pointed out in many studies. However, the theoretical analysis of mutex groups is sparse in current literature. This work provides a complexity analysis showing that inference of mutex groups is as hard as planning itself (PSPACE-Complete) and it also shows a tight relationship between mutex groups and graph cliques. This result motivates us to propose a new type of mutex group called a fact-alternating mutex group (fam-group) of which inference is NP-Complete. Moreover, we introduce an algorithm for the inference of fam-groups based on integer linear programming that is complete with respect to the maximal fam-groups and we demonstrate how beneficial fam-groups can be in the translation of planning tasks into finite domain representation. Finally, we show that fam-groups can be used for the detection of dead- end states and we propose a simple algorithm for the pruning of operators and facts as a preprocessing step that takes advantage of the properties of fam-groups. The experimental evaluation of the pruning algorithm shows a substantial increase in a number of solved tasks in domains from the optimal deterministic track of the last two planning competitions (IPC 2011 and 2014).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ15-20433Y" target="_blank" >GJ15-20433Y: Heuristické prohledávání pro multiagentní a faktorové plánování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Artificial Intelligence Research

  • ISSN

    1076-9757

  • e-ISSN

    1943-5037

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    47

  • Strana od-do

    475-521

  • Kód UT WoS článku

    000432399000006

  • EID výsledku v databázi Scopus

    2-s2.0-85044158070