Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00321682" target="_blank" >RIV/68407700:21230/18:00321682 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.jair.org/index.php/jair/article/view/11203" target="_blank" >https://www.jair.org/index.php/jair/article/view/11203</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures
Popis výsledku v původním jazyce
We propose a method to combine the interpretability and expressive power of firstorder logic with the effectiveness of neural network learning. In particular, we introduce a lifted framework in which first-order rules are used to describe the structure of a given problem setting. These rules are then used as a template for constructing a number of neural networks, one for each training and testing example. As the different networks corresponding to different examples share their weights, these weights can be efficiently learned using stochastic gradient descent. Our framework provides a flexible way for implementing and combining a wide variety of modelling constructs. In particular, the use of first-order logic allows for a declarative specification of latent relational structures, which can then be efficiently discovered in a given data set using neural network learning. Experiments on 78 relational learning benchmarks clearly demonstrate the effectiveness of the framework.
Název v anglickém jazyce
Lifted Relational Neural Networks: Efficient Learning of Latent Relational Structures
Popis výsledku anglicky
We propose a method to combine the interpretability and expressive power of firstorder logic with the effectiveness of neural network learning. In particular, we introduce a lifted framework in which first-order rules are used to describe the structure of a given problem setting. These rules are then used as a template for constructing a number of neural networks, one for each training and testing example. As the different networks corresponding to different examples share their weights, these weights can be efficiently learned using stochastic gradient descent. Our framework provides a flexible way for implementing and combining a wide variety of modelling constructs. In particular, the use of first-order logic allows for a declarative specification of latent relational structures, which can then be efficiently discovered in a given data set using neural network learning. Experiments on 78 relational learning benchmarks clearly demonstrate the effectiveness of the framework.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-26999S" target="_blank" >GA17-26999S: Hluboké relační učení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Artificial Intelligence Research
ISSN
1076-9757
e-ISSN
1943-5037
Svazek periodika
62
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
32
Strana od-do
69-100
Kód UT WoS článku
000441027500003
EID výsledku v databázi Scopus
2-s2.0-85048052675