Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Plant Identification: Experts vs. Machines in the Era of Deep Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322132" target="_blank" >RIV/68407700:21230/18:00322132 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-76445-0_8" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-76445-0_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-76445-0_8" target="_blank" >10.1007/978-3-319-76445-0_8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Plant Identification: Experts vs. Machines in the Era of Deep Learning

  • Popis výsledku v původním jazyce

    Automated identification of plants and animals have improved considerably in the last few years, in particular thanks to the recent advances in deep learning. The next big question is how far such automated systems are from the human expertise. Indeed, even the best experts are sometimes confused and/or disagree between each others when validating visual or audio observations of living organism. A picture or a sound actually contains only a partial information that is usually not sufficient to determine the right species with certainty. Quantifying this uncertainty and comparing it to the performance of automated systems is of high interest for both computer scientists and expert naturalists. This chapter reports an experimental study following this idea in the plant domain. In total, nine deep-learning systems implemented by three different research teams were evaluated with regard to nine expert botanists of the French flora. Therefore, we created a small set of plant observations that were identified in the field and revised by experts in order to have a near-perfect golden standard. The main outcome of this work is that the performance of state-of-the-art deep learning models is now close to the most advanced human expertise. This shows that automated plant identification systems are now mature enough for several routine tasks, and can offer very promising tools for autonomous ecological surveillance systems.

  • Název v anglickém jazyce

    Plant Identification: Experts vs. Machines in the Era of Deep Learning

  • Popis výsledku anglicky

    Automated identification of plants and animals have improved considerably in the last few years, in particular thanks to the recent advances in deep learning. The next big question is how far such automated systems are from the human expertise. Indeed, even the best experts are sometimes confused and/or disagree between each others when validating visual or audio observations of living organism. A picture or a sound actually contains only a partial information that is usually not sufficient to determine the right species with certainty. Quantifying this uncertainty and comparing it to the performance of automated systems is of high interest for both computer scientists and expert naturalists. This chapter reports an experimental study following this idea in the plant domain. In total, nine deep-learning systems implemented by three different research teams were evaluated with regard to nine expert botanists of the French flora. Therefore, we created a small set of plant observations that were identified in the field and revised by experts in order to have a near-perfect golden standard. The main outcome of this work is that the performance of state-of-the-art deep learning models is now close to the most advanced human expertise. This shows that automated plant identification systems are now mature enough for several routine tasks, and can offer very promising tools for autonomous ecological surveillance systems.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Multimedia Tools and Applications for Environmental & Biodiversity Informatics

  • ISBN

    978-3-319-76444-3

  • Počet stran výsledku

    19

  • Strana od-do

    131-149

  • Počet stran knihy

    221

  • Název nakladatele

    Springer, Cham

  • Místo vydání

  • Kód UT WoS kapitoly