One-dimensional propagation of longitudinal elastic waves through functionally graded materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322476" target="_blank" >RIV/68407700:21230/18:00322476 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020768318301252" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020768318301252</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijsolstr.2018.03.017" target="_blank" >10.1016/j.ijsolstr.2018.03.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
One-dimensional propagation of longitudinal elastic waves through functionally graded materials
Popis výsledku v původním jazyce
The one-dimensional propagation of longitudinal elastic waves along the thickness of a plate made of functionally graded materials excited by a harmonic force is reported in this article. The material properties of the plate are assumed to be graded along the thickness direction according to a trigonometric law distribution. This distribution smoothly connects the material properties of the upper and lower homogeneous materials that bounds the plate. The corresponding propagation equation is Ince-type equation that can be transformed to Heun's equation a local exact solution of which is expressed in terms of local Heun functions. The general nature of these functions is demonstrated based on four degenerate cases of Heun's equation. The transfer matrix method is used to study the elastic waves propagating in the inhomogeneous domain. The calculation of the transfer matrices requires the evaluation of the general solution in the interval containing two regular singular points. For this purpose, the modified Heun function is introduced. Based on the transfer matrices, the influence of both the asymmetry of the unit cell and various constituent materials on the transmission coefficient spectrum is studied. The transmission coefficient is also calculated for the locally periodic structures with the help of the Chebyshev polynomials. (C) 2018 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
One-dimensional propagation of longitudinal elastic waves through functionally graded materials
Popis výsledku anglicky
The one-dimensional propagation of longitudinal elastic waves along the thickness of a plate made of functionally graded materials excited by a harmonic force is reported in this article. The material properties of the plate are assumed to be graded along the thickness direction according to a trigonometric law distribution. This distribution smoothly connects the material properties of the upper and lower homogeneous materials that bounds the plate. The corresponding propagation equation is Ince-type equation that can be transformed to Heun's equation a local exact solution of which is expressed in terms of local Heun functions. The general nature of these functions is demonstrated based on four degenerate cases of Heun's equation. The transfer matrix method is used to study the elastic waves propagating in the inhomogeneous domain. The calculation of the transfer matrices requires the evaluation of the general solution in the interval containing two regular singular points. For this purpose, the modified Heun function is introduced. Based on the transfer matrices, the influence of both the asymmetry of the unit cell and various constituent materials on the transmission coefficient spectrum is studied. The transmission coefficient is also calculated for the locally periodic structures with the help of the Chebyshev polynomials. (C) 2018 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-23079S" target="_blank" >GA15-23079S: Šíření akustických vln nelokálními disperzními zónami</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Solids and Structures
ISSN
0020-7683
e-ISSN
1879-2146
Svazek periodika
146
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
43-54
Kód UT WoS článku
000438004200003
EID výsledku v databázi Scopus
2-s2.0-85044527506