Artificial Intelligence for Long-Term Robot Autonomy: A Survey
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322756" target="_blank" >RIV/68407700:21230/18:00322756 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/LRA.2018.2860628" target="_blank" >http://dx.doi.org/10.1109/LRA.2018.2860628</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/LRA.2018.2860628" target="_blank" >10.1109/LRA.2018.2860628</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Intelligence for Long-Term Robot Autonomy: A Survey
Popis výsledku v původním jazyce
Autonomous systems will play an essential role in many applications across diverse domains including space, marine, air, field, road, and service robotics. They will assist us in our daily routines and perform dangerous, dirty, and dull tasks. However, enabling robotic systems to perform autonomously in complex, real-world scenarios over extended time periods (i.e., weeks, months, or years) poses many challenges. Some of these have been investigated by subdisciplines of Artificial Intelligence (AI) including navigation and mapping, perception, knowledge representation and reasoning, planning, interaction, and learning. The different subdisciplines have developed techniques that, when re-integrated within an autonomous system, can enable robots to operate effectively in complex, long-term scenarios. In this letter, we survey and discuss AI techniques as "enablers" for long-term robot autonomy, current progress in integrating these techniques within long-running robotic systems, and the future challenges and opportunities for AI in long-term autonomy.
Název v anglickém jazyce
Artificial Intelligence for Long-Term Robot Autonomy: A Survey
Popis výsledku anglicky
Autonomous systems will play an essential role in many applications across diverse domains including space, marine, air, field, road, and service robotics. They will assist us in our daily routines and perform dangerous, dirty, and dull tasks. However, enabling robotic systems to perform autonomously in complex, real-world scenarios over extended time periods (i.e., weeks, months, or years) poses many challenges. Some of these have been investigated by subdisciplines of Artificial Intelligence (AI) including navigation and mapping, perception, knowledge representation and reasoning, planning, interaction, and learning. The different subdisciplines have developed techniques that, when re-integrated within an autonomous system, can enable robots to operate effectively in complex, long-term scenarios. In this letter, we survey and discuss AI techniques as "enablers" for long-term robot autonomy, current progress in integrating these techniques within long-running robotic systems, and the future challenges and opportunities for AI in long-term autonomy.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ17-27006Y" target="_blank" >GJ17-27006Y: Prostorově temporální representace pro dlouhodobou navigaci mobilních robotů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Robotics and Automation Letters
ISSN
2377-3766
e-ISSN
2377-3766
Svazek periodika
3
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
4023-4030
Kód UT WoS článku
000441935900005
EID výsledku v databázi Scopus
2-s2.0-85063304950