Accelerating the Branch-and-Price Algorithm Using Machine Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00322959" target="_blank" >RIV/68407700:21230/18:00322959 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/18:00322959
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ejor.2018.05.046" target="_blank" >http://dx.doi.org/10.1016/j.ejor.2018.05.046</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2018.05.046" target="_blank" >10.1016/j.ejor.2018.05.046</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accelerating the Branch-and-Price Algorithm Using Machine Learning
Popis výsledku v původním jazyce
This study presents a widely applicable approach to accelerate the computation time of the Branch-andPrice (BaP) algorithm, which is a very powerful exact method used for solving complex combinatorial problems. Existing studies indicate that the most computationally demanding element of the BaP algorithm is the pricing problem. The case-studies presented in this paper show that more than 90% of the total Central Processing Unit (CPU) processing time is consumed by solving the pricing problem. The pricing problem is repetitive in nature and it solves the same problem from scratch differing only in the input dual prices. In this study, we demonstrate how to utilize the knowledge gained from previous executions of the pricing problem to reduce the solution space of pricing problems solved in future iterations. The solution is based on an online machine learning method that is not tailor-made for a specific problem (but needs a proper problem-dependent feature selection) and uses a very fast regression model that generates negligible overhead compared to the total CPU processing time of the BaP algorithm. The method predicts a tight upper bound for the current iteration of the pricing problem while preserving the exactness of the BaP algorithm. The efficiency of the proposed approach is demonstrated by two distinct case-studies: the nurse rostering problem and the scheduling of time-division multiplexing for multi-core platforms. The experiments carried out for both case-studies using benchmark instances from the literature show a 40% and 22% average CPU time reduction for the entire BaP algorithm.
Název v anglickém jazyce
Accelerating the Branch-and-Price Algorithm Using Machine Learning
Popis výsledku anglicky
This study presents a widely applicable approach to accelerate the computation time of the Branch-andPrice (BaP) algorithm, which is a very powerful exact method used for solving complex combinatorial problems. Existing studies indicate that the most computationally demanding element of the BaP algorithm is the pricing problem. The case-studies presented in this paper show that more than 90% of the total Central Processing Unit (CPU) processing time is consumed by solving the pricing problem. The pricing problem is repetitive in nature and it solves the same problem from scratch differing only in the input dual prices. In this study, we demonstrate how to utilize the knowledge gained from previous executions of the pricing problem to reduce the solution space of pricing problems solved in future iterations. The solution is based on an online machine learning method that is not tailor-made for a specific problem (but needs a proper problem-dependent feature selection) and uses a very fast regression model that generates negligible overhead compared to the total CPU processing time of the BaP algorithm. The method predicts a tight upper bound for the current iteration of the pricing problem while preserving the exactness of the BaP algorithm. The efficiency of the proposed approach is demonstrated by two distinct case-studies: the nurse rostering problem and the scheduling of time-division multiplexing for multi-core platforms. The experiments carried out for both case-studies using benchmark instances from the literature show a 40% and 22% average CPU time reduction for the entire BaP algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
1872-6860
Svazek periodika
271
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
1055-1069
Kód UT WoS článku
000442060500020
EID výsledku v databázi Scopus
2-s2.0-85049119432