Piecewise *-homomorphisms and Jordan maps on C*-algebras and factor von Neumann algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00323414" target="_blank" >RIV/68407700:21230/18:00323414 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jmaa.2017.12.056" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2017.12.056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2017.12.056" target="_blank" >10.1016/j.jmaa.2017.12.056</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Piecewise *-homomorphisms and Jordan maps on C*-algebras and factor von Neumann algebras
Popis výsledku v původním jazyce
We investigate maps between C*-algebras that are well behaved with respect to mutually commuting elements. We contribute to the Mackey-Gleason problem by showing that any continuous bijection between self-adjoint parts of C*-algebras that preserves triple product (a, b) -> aba, and is linear on commutative subspaces, is already linear. This allows us to describe such maps as direct differences of linear Jordan isomorphisms. We shall show that any weak*-continuous bijection between positive invertible elements of von Neumann factors (of dimension at least 9) that preserves products of commuting elements in both directions is of the form a -> e(Psi(log a))theta(a(c)), where theta is a linear Jordan *-isomorphism, c nonzero real number and Psi is a hermitian continuous functional. In a similar way we describe the same type of bicontinuous maps between unitary groups of von Neumann factors. General form of the above mentioned maps on C*-algebras is also presented. (C) 2017 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Piecewise *-homomorphisms and Jordan maps on C*-algebras and factor von Neumann algebras
Popis výsledku anglicky
We investigate maps between C*-algebras that are well behaved with respect to mutually commuting elements. We contribute to the Mackey-Gleason problem by showing that any continuous bijection between self-adjoint parts of C*-algebras that preserves triple product (a, b) -> aba, and is linear on commutative subspaces, is already linear. This allows us to describe such maps as direct differences of linear Jordan isomorphisms. We shall show that any weak*-continuous bijection between positive invertible elements of von Neumann factors (of dimension at least 9) that preserves products of commuting elements in both directions is of the form a -> e(Psi(log a))theta(a(c)), where theta is a linear Jordan *-isomorphism, c nonzero real number and Psi is a hermitian continuous functional. In a similar way we describe the same type of bicontinuous maps between unitary groups of von Neumann factors. General form of the above mentioned maps on C*-algebras is also presented. (C) 2017 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-00941S" target="_blank" >GA17-00941S: Topologické a geometrické vlastnosti Banachových prostorů a operátorových algeber II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
462
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
1014-1031
Kód UT WoS článku
000435065200058
EID výsledku v databázi Scopus
2-s2.0-85042873919