Data-driven Construction of Symbolic Process Models for Reinforcement Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324236" target="_blank" >RIV/68407700:21230/18:00324236 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/18:00324236
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICRA.2018.8461182" target="_blank" >http://dx.doi.org/10.1109/ICRA.2018.8461182</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICRA.2018.8461182" target="_blank" >10.1109/ICRA.2018.8461182</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-driven Construction of Symbolic Process Models for Reinforcement Learning
Popis výsledku v původním jazyce
Reinforcement learning (RL) is a suitable approach for controlling systems with unknown or time-varying dynamics. RL in principle does not require a model of the system, but before it learns an acceptable policy, it needs many unsuccessful trials, which real robots usually cannot withstand. It is well known that RL can be sped up and made safer by using models learned online. In this paper, we propose to use symbolic regression to construct compact, parsimonious models described by analytic equations, which are suitable for real-time robot control. Single node genetic programming (SNGP) is employed as a tool to automatically search for equations fitting the available data. We demonstrate the approach on two benchmark examples: a simulated mobile robot and the pendulum swing-up problem; the latter both in simulations and real-time experiments. The results show that through this approach we can find accurate models even for small batches of training data. Based on the symbolic model found, RL can control the system well.
Název v anglickém jazyce
Data-driven Construction of Symbolic Process Models for Reinforcement Learning
Popis výsledku anglicky
Reinforcement learning (RL) is a suitable approach for controlling systems with unknown or time-varying dynamics. RL in principle does not require a model of the system, but before it learns an acceptable policy, it needs many unsuccessful trials, which real robots usually cannot withstand. It is well known that RL can be sped up and made safer by using models learned online. In this paper, we propose to use symbolic regression to construct compact, parsimonious models described by analytic equations, which are suitable for real-time robot control. Single node genetic programming (SNGP) is employed as a tool to automatically search for equations fitting the available data. We demonstrate the approach on two benchmark examples: a simulated mobile robot and the pendulum swing-up problem; the latter both in simulations and real-time experiments. The results show that through this approach we can find accurate models even for small batches of training data. Based on the symbolic model found, RL can control the system well.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20204 - Robotics and automatic control
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2018 IEEE International Conference on Robotics and Automation
ISBN
978-1-5386-3081-5
ISSN
1050-4729
e-ISSN
—
Počet stran výsledku
8
Strana od-do
5105-5112
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ
Místo konání akce
Brisbane
Datum konání akce
21. 5. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000446394503126