Analysis of Level Dependence of 2f(1) - f(2) Component of Otoacoustic Emissions Using Nonlinear 2D Cochlear Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324545" target="_blank" >RIV/68407700:21230/18:00324545 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/18:00324545
Výsledek na webu
<a href="http://dx.doi.org/10.3813/AAA.919248" target="_blank" >http://dx.doi.org/10.3813/AAA.919248</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3813/AAA.919248" target="_blank" >10.3813/AAA.919248</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Level Dependence of 2f(1) - f(2) Component of Otoacoustic Emissions Using Nonlinear 2D Cochlear Model
Popis výsledku v původním jazyce
A two-dimensional nonlinear cochlear model was used to study the dependence of the nonlinear-distortion component of cubic distortion product otoacoustic emissions (DPOAEs) on the levels of the primary tones: f(1), f(2.) DPOAE was simulated for a fixed frequency ratio between the primaries f(2)/f(1) = 1.2 and for two amplification gains at f(2) of 1.2, 2.4 and 4.8 kHz. The simulated optimal primary levels depend on frequency. Loss of the gain affects the optimal levels at the lowest intensities for which the DPOAE amplitude would fall below the noise level in real experiments. The nonlinear force acting in the model as a source of DPOAEs along the basilar membrane (BM) was calculated. Simulations showed that the nonlinear force spreads over a wide part of the length of BM, especially at large levels of the primaries and low f(2). Contributions along the source length may cancel each other out if the phase difference between them is half a cycle. This contributes to saturation of the DPOAE amplitude and causes notches. (C) 2018 The Author(s). Published by S. Hirzel Verlag . EAA. This is an open access article under the terms of the Creative Commons Attribution (CC BY 4.0) license.
Název v anglickém jazyce
Analysis of Level Dependence of 2f(1) - f(2) Component of Otoacoustic Emissions Using Nonlinear 2D Cochlear Model
Popis výsledku anglicky
A two-dimensional nonlinear cochlear model was used to study the dependence of the nonlinear-distortion component of cubic distortion product otoacoustic emissions (DPOAEs) on the levels of the primary tones: f(1), f(2.) DPOAE was simulated for a fixed frequency ratio between the primaries f(2)/f(1) = 1.2 and for two amplification gains at f(2) of 1.2, 2.4 and 4.8 kHz. The simulated optimal primary levels depend on frequency. Loss of the gain affects the optimal levels at the lowest intensities for which the DPOAE amplitude would fall below the noise level in real experiments. The nonlinear force acting in the model as a source of DPOAEs along the basilar membrane (BM) was calculated. Simulations showed that the nonlinear force spreads over a wide part of the length of BM, especially at large levels of the primaries and low f(2). Contributions along the source length may cancel each other out if the phase difference between them is half a cycle. This contributes to saturation of the DPOAE amplitude and causes notches. (C) 2018 The Author(s). Published by S. Hirzel Verlag . EAA. This is an open access article under the terms of the Creative Commons Attribution (CC BY 4.0) license.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10307 - Acoustics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACTA ACUSTICA UNITED WITH ACUSTICA
ISSN
1610-1928
e-ISSN
1861-9959
Svazek periodika
104
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
4
Strana od-do
891-894
Kód UT WoS článku
000447976300037
EID výsledku v databázi Scopus
2-s2.0-85055878436