Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

License Plate Recognition and Super-resolution from Low-Resolution Videos by Convolutional Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F18%3A00324562" target="_blank" >RIV/68407700:21230/18:00324562 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.bmvc2018.org/contents/papers/0537.pdf" target="_blank" >http://www.bmvc2018.org/contents/papers/0537.pdf</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    License Plate Recognition and Super-resolution from Low-Resolution Videos by Convolutional Neural Networks

  • Popis výsledku v původním jazyce

    The paper proposes Convolutional Neural Network (CNN) for License Plate Recognition (LPR) from low-resolution videos. The CNN accepts arbitrary long sequence of geometrically registered license plate (LP) images and outputs a distribution over a set of strings with an admissible length. Evaluation on 31k low-resolution videos shows that the proposed CNN significantly outperforms both baseline methods and humans by a large margin. Our second contribution is a CNN based super-resolution generator of LP images. The generator converts input low-resolution LP image into its high-resolution counterpart which i) preserves the structure of the input and ii) depicts a string that was previously recognized from video.

  • Název v anglickém jazyce

    License Plate Recognition and Super-resolution from Low-Resolution Videos by Convolutional Neural Networks

  • Popis výsledku anglicky

    The paper proposes Convolutional Neural Network (CNN) for License Plate Recognition (LPR) from low-resolution videos. The CNN accepts arbitrary long sequence of geometrically registered license plate (LP) images and outputs a distribution over a set of strings with an admissible length. Evaluation on 31k low-resolution videos shows that the proposed CNN significantly outperforms both baseline methods and humans by a large margin. Our second contribution is a CNN based super-resolution generator of LP images. The generator converts input low-resolution LP image into its high-resolution counterpart which i) preserves the structure of the input and ii) depicts a string that was previously recognized from video.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-05872S" target="_blank" >GA16-05872S: Pravděpodobnostní grafové modely a hluboké učení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů